The presented manuscript reports the simultaneous detection of a ternary mixture of the benzodiazepines diazepam, lorazepam, and flunitrazepam using an array of voltammetric sensors and the electronic tongue principle. The electrodes used in the array were selected from a set of differently modified graphite epoxy composite electrodes; specifically, six electrodes were used incorporating metallic nanoparticles of Cu and Pt, oxide nanoparticles of CuO and WO, plus pristine electrodes of epoxy-graphite and metallic Pt disk. Cyclic voltammetry was the technique used to obtain the voltammetric responses.
View Article and Find Full Text PDFThis work reports the applicability of a voltammetric sensor array able to quantify the content of 2,4-dinitrophenol, 4-nitrophenol, and picric acid in artificial samples using the electronic tongue (ET) principles. The ET is based on cyclic voltammetry signals, obtained from an array of metal disk electrodes and a graphite epoxy composite electrode, compressed using discrete wavelet transform with chemometric tools such as artificial neural networks (ANNs). ANNs were employed to build the quantitative prediction model.
View Article and Find Full Text PDFThis work reports the applicability of a voltammetric sensor array able to evaluate the content of the metabolites of the Brett defect: 4-ethylphenol, 4-ethylguaiacol and 4-ethylcatechol in spiked wine samples using the electronic tongue (ET) principles. The ET used cyclic voltammetry signals, obtained from an array of six graphite epoxy modified composite electrodes; these were compressed using Discrete Wavelet transform while chemometric tools, among these artificial neural networks (ANNs), were employed to build the quantitative prediction model. In this manner, a set of standards based on a modified full factorial design and ranging from 0 to 25mgL on each phenol, was prepared to build the model; afterwards, the model was validated with an external test set.
View Article and Find Full Text PDFThis work reports the application of an electronic tongue as a tool towards the analysis of wine in tasks such as its discrimination based on the maturing in barrels or the prediction of the global scores assigned by a sensory panel. To this aim, red wine samples were first analysed with the voltammetric sensor array, without performing any sample pretreatment. Afterwards, obtained responses were preprocessed employing fast Fourier transform (FFT) for the compression and reduction of signal complexity, and obtained coefficients were then used as inputs to build the qualitative and quantitative models employing either linear discriminant analysis (LDA) or partial least squares regression (PLS), respectively.
View Article and Find Full Text PDFThis work reports the application of a voltammetric electronic tongue (ET) towards the simultaneous determination of both nitro-containing and peroxide-based explosive compounds, two families that represent the vast majority of compounds employed either in commercial mixtures or in improvised explosive devices. The multielectrode array was formed by graphite, gold and platinum electrodes, which exhibited marked mix-responses towards the compounds examined; namely, 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), pentaerythritol tetranitrate (PETN), 2,4,6-trinitrotoluene (TNT), N-methyl-N,2,4,6-tetranitroaniline (Tetryl) and triacetone triperoxide (TATP). Departure information was the set of voltammograms, which were first analyzed by means of principal component analysis (PCA) allowing the discrimination of the different individual compounds, while artificial neural networks (ANNs) were used for the resolution and individual quantification of some of their mixtures (total normalized root mean square error for the external test set of 0.
View Article and Find Full Text PDFElectronic tongue technology based on arrays of cross-sensitive chemical sensors and chemometric data processing has attracted a lot of researchers' attention through the last years. Several so far reported applications dealing with pharmaceutical related tasks employed different e-tongue systems to address different objectives. In this situation, it is hard to judge on the benefits and drawbacks of particular e-tongue implementations for R&D in pharmaceutics.
View Article and Find Full Text PDFThis work describes the immobilization of 4-carboxybenzo-18-crown-6 (CB-18-crown-6) and 4-carboxybenzo-15-crown-5 (CB-15-crown-5) assisted by lysine on aryl diazonium salt monolayers anchored to the surface of graphite-epoxy composite electrodes (GEC), and their use for the simultaneous determination of Cd(II), Pb(II) and Cu(II) by differential pulse anodic stripping voltammetry (DPASV). These modified electrodes display a good repeatability and reproducibility with detection and quantification limits at levels of µg L(-1) (ppb), confirming their suitability for the determination of Cd(II), Pb(II) and Cu(II) ions in environmental samples. The overlapped nature of the multimetal stripping measurements was resolved by employing the two-sensor array CB-15-crown-5-GEC and CB-18-crown-6-GEC, since the metal complex selectivity exhibited by the considered ligands could add some discrimination power.
View Article and Find Full Text PDF