Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder caused by a mutation in the LMNA gene that provokes the synthesis of progerin, a mutant version of the nuclear protein lamin A that accelerates aging and precipitates death. The most clinically relevant feature of HGPS is the development of cardiac anomalies and severe vascular alterations, including massive loss of vascular smooth muscle cells, increased fibrosis, and generalized atherosclerosis. However, it is unclear if progerin expression in endothelial cells (ECs) causes the cardiovascular manifestations of HGPS.
View Article and Find Full Text PDFHutchinson-Gilford progeria syndrome (HGPS) is a rare disease caused by the expression of progerin, a mutant protein that accelerates aging and precipitates death. Given that atherosclerosis complications are the main cause of death in progeria, here, we investigated whether progerin-induced atherosclerosis is prevented in and mice with progerin suppression in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), respectively. mice were undistinguishable from mice with ubiquitous progerin expression, in contrast with the ameliorated progeroid phenotype of mice.
View Article and Find Full Text PDFMutations in the gene (encoding lamin A/C proteins) cause several human cardiac diseases, including dilated cardiomyopathies (-DCM). The main clinical risks in -DCM patients are sudden cardiac death and progressive left ventricular ejection fraction deterioration, and therefore most human and animal studies have sought to define the mechanisms through which mutations provoke cardiac alterations, with a particular focus on cardiomyocytes. To investigate if mutations also cause vascular alterations that might contribute to the etiopathogenesis of -DCM, we generated and characterized mice, which constitutively lack lamin A/C in vascular smooth muscle cells (VSMCs), cardiac fibroblasts, and cardiomyocytes.
View Article and Find Full Text PDFHutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disease caused by expression of progerin, a lamin A variant that is also expressed at low levels in non-HGPS individuals. Although HGPS patients die predominantly from myocardial infarction and stroke, the mechanisms that provoke pathological alterations in the coronary and cerebral arteries in HGPS remain ill defined. Here, we assessed vascular function in the coronary arteries (CorAs) and carotid arteries (CarAs) of progerin-expressing Lmna mice (G609G), both in resting conditions and after hypoxic stimulus.
View Article and Find Full Text PDFBackground: Hutchinson-Gilford progeria syndrome (HGPS) is a rare disorder characterized by premature aging and death mainly because of myocardial infarction, stroke, or heart failure. The disease is provoked by progerin, a variant of lamin A expressed in most differentiated cells. Patients look healthy at birth, and symptoms typically emerge in the first or second year of life.
View Article and Find Full Text PDFAims: Hutchinson-Gilford progeria syndrome (HGPS) is an ultrarare laminopathy caused by expression of progerin, a lamin A variant, also present at low levels in non-HGPS individuals. HGPS patients age and die prematurely, predominantly from cardiovascular complications. Progerin-induced cardiac repolarization defects have been described previously, although the underlying mechanisms are unknown.
View Article and Find Full Text PDFHutchinson-Gilford progeria syndrome (HGPS) is among the most devastating of the laminopathies, rare genetic diseases caused by mutations in genes encoding nuclear lamina proteins. HGPS patients age prematurely and die in adolescence, typically of atherosclerosis-associated complications. The mechanisms of HGPS-related atherosclerosis are not fully understood due to the scarcity of patient-derived samples and the availability of only one atheroprone mouse model of the disease.
View Article and Find Full Text PDFAging is the main risk factor for cardiovascular and metabolic diseases, which have become a global concern as the world population ages. These diseases and the aging process are exacerbated in Hutchinson-Gilford progeria syndrome (HGPS or progeria). Here, we evaluated the cardiometabolic disease in animal models of premature and normal aging with the aim of identifying alterations that are shared or specific to each condition.
View Article and Find Full Text PDFCells
March 2020
Cardiovascular disease (CVD) is the main cause of death worldwide, and aging is its leading risk factor. Aging is much accelerated in Hutchinson-Gilford progeria syndrome (HGPS), an ultra-rare genetic disorder provoked by the ubiquitous expression of a mutant protein called progerin. HGPS patients die in their teens, primarily due to cardiovascular complications.
View Article and Find Full Text PDFThe CC chemokine 1 (CCL1, also called I-309 or TCA3) is a potent chemoattractant for leukocytes that plays an important role in inflammatory processes and diseases through binding to its receptor CCR8. Here, we investigated the role of the CCL1-CCR8 axis in atherosclerosis. We found increased expression of CCL1 in the aortas of atherosclerosis-prone fat-fed apolipoprotein E (Apoe)-null mice; moreover, in vitro flow chamber assays and in vivo intravital microscopy demonstrated an essential role for CCL1 in leukocyte recruitment.
View Article and Find Full Text PDFHutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disorder for which no cure exists. The disease is characterized by premature aging and inevitable death in adolescence due to cardiovascular complications. Most HGPS patients carry a heterozygous de novo c.
View Article and Find Full Text PDFHutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder caused by progerin, a mutant lamin A variant. HGPS patients display accelerated aging and die prematurely, typically from atherosclerosis complications. Recently, we demonstrated that progerin-driven vascular smooth muscle cell (VSMC) loss accelerates atherosclerosis leading to premature death in apolipoprotein E-deficient mice.
View Article and Find Full Text PDFBackground: Atherosclerosis involves activation of the IRAK1/TRAF6/NF-κB inflammatory cascade, which is negatively regulated by miR146a. Previous studies showed that the TT genotype of rs2431697, located near the miR-146a gene, drives lower miR-146a transcription and predicts adverse cardiovascular events in anticoagulated atrial fibrillation patients. Moreover, systemic miR-146a administration protects mice from atherosclerosis.
View Article and Find Full Text PDFBackground: Progerin, an aberrant protein that accumulates with age, causes the rare genetic disease Hutchinson-Gilford progeria syndrome (HGPS). Patients who have HGPS exhibit ubiquitous progerin expression, accelerated aging and atherosclerosis, and die in their early teens, mainly of myocardial infarction or stroke. The mechanisms underlying progerin-induced atherosclerosis remain unexplored, in part, because of the lack of appropriate animal models.
View Article and Find Full Text PDFMethods for staining tissues with Oil Red O and hematoxylin-eosin are classical histological techniques that are widely used to quantify atherosclerotic burden in mouse tissues because of their ease of use, reliability, and the large amount of information they provide. These stains can provide quantitative data about the impact of a genetic or environmental factor on atherosclerotic burden and on the initiation, progression, or regression of the disease, and can also be used to evaluate the efficacy of drugs designed to prevent or treat atherosclerosis. This chapter provides protocols for quantifying atherosclerotic burden in mouse aorta and aortic root, including methods for dissection, Oil Red O staining, hematoxylin-eosin staining, and image analysis.
View Article and Find Full Text PDFAlthough tumor-associated macrophages (TAMs) are involved in tumor growth and metastasis, the mechanisms controlling their pro-tumoral activities remain largely unknown. The transcription factor c-MYC has been recently shown to regulate in vitro human macrophage polarization and be expressed in macrophages infiltrating human tumors. In this study, we exploited the predominant expression of LysM in myeloid cells to generate c-Myc(fl/fl) LysM(cre/+) mice, which lack c-Myc in macrophages, to investigate the role of macrophage c-MYC expression in cancer.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
November 2011
Objective: Genetic ablation of the growth suppressor p27(Kip1) (p27) in the mouse aggravates atherosclerosis coinciding with enhanced arterial cell proliferation. However, it is unknown whether molecular mechanisms that limit p27's protective function contribute to atherosclerosis development and whether p27 exerts proliferation-independent activities in the arterial wall. This study aims to provide insight into both questions by investigating the role in atherosclerosis of p27 phosphorylation at serine 10 (p27-phospho-Ser10), a major posttranslational modification of this protein.
View Article and Find Full Text PDFObjectives: The goal of this study was to investigate the role in atherosclerosis of the tumor suppressor protein ARF (human p14(ARF), mouse p19(ARF)) encoded by the CDKN2A gene.
Background: Atherosclerosis is characterized by excessive proliferation and apoptosis, 2 cellular processes regulated by CDKN2A. Although recent genome-wide association studies have linked atherosclerotic diseases to a genomic region in human chromosome 9p21 near the CDKN2A locus, the mechanisms underlying this gene-disease association remain undefined, and no causal link has been established between CDKN2A and atherosclerosis.