Publications by authors named "Andres de Los Rios Sommer"

We theoretically show that strong mechanical quantum squeezing in a linear optomechanical system can be rapidly generated through the dynamical instability reached in the far red-detuned and ultrastrong coupling regime. We show that this mechanism, which harnesses unstable multimode quantum dynamics, is particularly suited to levitated optomechanics, and we argue for its feasibility for the case of a levitated nanoparticle coupled to a microcavity via coherent scattering. We predict that for submillimeter-sized cavities the particle motion, initially thermal and well above its ground state, becomes mechanically squeezed by tens of decibels on a microsecond timescale.

View Article and Find Full Text PDF

Quantum control of a system requires the manipulation of quantum states faster than any decoherence rate. For mesoscopic systems, this has so far only been reached by few cryogenic systems. An important milestone towards quantum control is the so-called strong coupling regime, which in cavity optomechanics corresponds to an optomechanical coupling strength larger than cavity decay rate and mechanical damping.

View Article and Find Full Text PDF

We investigate the influence of laser phase noise heating on resolved sideband cooling in the context of cooling the center-of-mass motion of a levitated nanoparticle in a high-finesse cavity. Although phase noise heating is not a fundamental physical constraint, the regime where it becomes the main limitation in Levitodynamics has so far been unexplored and hence embodies from this point forward the main obstacle in reaching the motional ground state of levitated mesoscopic objects with resolved sideband cooling. We reach minimal center-of-mass temperatures comparable to T_{min}=10  mK at a pressure of p=3×10^{-7}  mbar, solely limited by phase noise.

View Article and Find Full Text PDF