Extracellular synthesis of functional cyclodextrins (CDs) as intermediates of starch assimilation is a convenient microbial adaptation to sequester substrates, increase the half-life of the carbon source, carry bioactive compounds, and alleviate chemical toxicity through the formation of CD-guest complexes. Bacteria encoding the four steps of the carbohydrate metabolism pathway via cyclodextrins (CM-CD) actively internalize CDs across the microbial membrane via a putative type I ATP-dependent ABC sugar importer system, MdxEFG-(X/MsmX). While the first step of the CM-CD pathway encompasses extracellular starch-active cyclomaltodextrin glucanotransferases (CGTases) to synthesize linear dextrins and CDs, it is the ABC importer system in the second step that is the critical factor in determining which molecules from the CGTase activity will be internalized by the cell.
View Article and Find Full Text PDFAsparaginase (ASNase) is a widely applied chemotherapeutic drug that is used to treat Acute Lymphoblastic Leukemia (ALL); however, immune responses and silent inactivation of the drug often limit its bioavailability. Many strategies have been proposed to overcome these drawbacks, including the development of improved formulations (biobetters), but only two of them are currently on the market. Nano- and micro-encapsulation are some of the most promising and novel approaches to enhance in vivo performance of ASNase, preventing the direct contact of the enzyme with the environment, protecting it from protease degradation, increasing the enzymes catalytic half-life, and in some cases, reducing immunogenicity.
View Article and Find Full Text PDFAsparaginase (ASNase) is a biopharmaceutical for Acute Lymphoblastic Leukemia (ALL) treatment. However, it shows undesirable side effects such as short lifetimes, susceptibility to proteases, and immunogenicity. Here, ASNase encapsidation was genetically directed in bacteriophage P22-based virus-like particles (VLPs) (ASNase-P22 nanoreactors) as a strategy to overcome these challenges.
View Article and Find Full Text PDFThe enzyme L-asparaginase from is a therapeutic enzyme that has been a cornerstone in the clinical treatment of acute lymphoblastic leukemia for the last decades. However, treatment effectiveness is limited by the highly immunogenic nature of the protein and its cross-reactivity towards L-glutamine. In this work, a bioinformatic approach was used to identify, select and computationally characterize L-asparaginases from through sequence-based screening analyses, immunoinformatics, homology modeling, and molecular docking studies.
View Article and Find Full Text PDFThe labdane-related diterpenoids (LRDs) are a large group of natural products with a broad range of biological activities. They are synthesized through two consecutive reactions catalyzed by class II and I diterpene synthases (DTSs). The structural complexity of LRDs mainly depends on the catalytic activity of class I DTSs, which catalyze the formation of bicyclic to pentacyclic LRDs, using as a substrate the catalytic product of class II DTSs.
View Article and Find Full Text PDFCatalases are biotechnologically relevant enzymes because of their applications in food technology, bioremediation, and biomedicine. The dismutation of hydrogen peroxide occurs in two steps; in the first one, the enzyme forms an oxidized compound I (Cpd I) and in the second one, the enzyme is reduced to the ferric state. In this research work, we analyzed the reduction of Cpd I by X-ray radiation damage during diffraction experiments in crystals of CAT-3, a Large-Size Subunit Catalase (LSC) from Neurospora crassa.
View Article and Find Full Text PDFActivated sludge is produced during the treatment of sewage and industrial wastewaters. Its diverse chemical composition allows growth of a large collection of microbial phylotypes with very different physiologic and metabolic profiles. Thus, activated sludge is considered as an excellent environment to discover novel enzymes through functional metagenomics, especially activities related with degradation of environmental pollutants.
View Article and Find Full Text PDFIn plants, the last step in the biosynthesis of the osmoprotectant glycine betaine (GB) is the NAD(+)-dependent oxidation of betaine aldehyde (BAL) catalysed by some aldehyde dehydrogenase (ALDH) 10 enzymes that exhibit betaine aldehyde dehydrogenase (BADH) activity. Given the irreversibility of the reaction, the short-term regulation of these enzymes is of great physiological relevance to avoid adverse decreases in the NAD(+):NADH ratio. In the present study, we report that the Spinacia oleracea BADH (SoBADH) is reversibly and partially inactivated by BAL in the absence of NAD(+)in a time- and concentration-dependent mode.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
July 2013
Polymorphism is frequently observed from different crystallization conditions. In proteins, the effect on conformational variability is poorly documented, with only a few reported examples. Here, three polymorphic crystal structures determined for a large-subunit catalase, CAT-3 from Neurospora crassa, are reported.
View Article and Find Full Text PDF