A solution approach is proposed to optimize the selection of landscape cells for inclusion in firebreaks. It involves linking spatially explicit information on a landscape's ecological values, historical ignition patterns and fire spread behavior. A firebreak placement optimization model is formulated that captures the tradeoff between the direct loss of biodiversity due to the elimination of vegetation in areas designated for placement of firebreaks and the protection provided by the firebreaks from losses due to future forest fires.
View Article and Find Full Text PDFThe strong link between climate change and increased wildfire risk suggests a paradigm change on how humans must co-exist with fire and the environment. Different studies have demonstrated that human-induced fire ignitions can account for more than 90 % of forest fires, so human co-existence with wildfires requires informed decision making via preventive policies in order to minimize risk and adapt to new conditions. In this paper, we address the multidimensional effects of three groups of drivers (human activity, geographic and topographic, and land cover) that can be managed to assist in territorial planning under fire risk.
View Article and Find Full Text PDFWe present a study of annual forestry harvesting planning considering the risk of compaction generated by the transit of heavy forestry machinery. Soil compaction is a problem that occurs when the soil loses its natural resistance to resist the movement of machinery, causing the soil to be compacted in excess. This compaction generates unwanted effects on both the ecosystem and its economic sustainability.
View Article and Find Full Text PDF