Malaria, an infection caused by apicomplexan parasites of the genus , continues to exact a significant toll on public health with over 200 million cases world-wide, and annual deaths in excess of 600,000. Considerable progress has been made to reduce malaria burden in endemic countries in the last two decades. However, parasite and mosquito resistance to frontline chemotherapies and insecticides, respectively, highlights the continuing need for the development of safe and effective vaccines.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to impose a serious burden on health systems globally. Despite worldwide vaccination, social distancing and wearing masks, the spread of the virus is ongoing. One of the mechanisms by which neutralizing antibodies (NAbs) block virus entry into cells encompasses interaction inhibition between the cell surface receptor angiotensin-converting enzyme 2 (ACE2) and the spike (S) protein of SARS-CoV-2.
View Article and Find Full Text PDFPolymer-grafted chromatography media, especially ion exchangers, are high performance materials for protein purification. However, due to the pore size limitation, conventional chromatography beads are usually not considered for the downstream processing of large biomolecules such as virus-like particles (VLPs). Contrariwise, since the outer surface of the chromatography beads provides satisfactory binding capacity for VLPs and impurities of smaller size can bind inside of the beads, conventional porous beads should be considered for VLP capture and purification.
View Article and Find Full Text PDFSeparation of enveloped virus-like particles from other extracellular vesicles is a challenging separation problem due to the similarity of these bionanoparticles. Without simple and scalable methods for purification and analytics, it is difficult to gain deeper insight into their biological function. A two-step chromatographic purification method was developed.
View Article and Find Full Text PDFThe rapid quantification of enveloped virus-like particles (VLPs) requires orthogonal methods to obtain reliable results. Three methods-nanoparticle tracking analysis (NTA), size-exclusion HPLC (SE-HPLC) with UV detection, and detection with multi-angle light scattering (MALS)-for quantification of enveloped VLPs have been compared, and the lower and upper limits of detection and quantification have been evaluated. NTA directly counts the enveloped VLPs, and a particle number is obtained with a lower limit of detection (LLOD) of 1.
View Article and Find Full Text PDFThe downstream processing of enveloped virus-like particles is very challenging because of the biophysical and structural similarity between correctly assembled particles and contaminating vesicular particles present in the feedstock. We used hydroxyl-functionalized polymethacrylate monoliths, providing hydrophobic and electrostatic binding contributions, for the purification of HIV-1 gag virus-like particles. The clarified culture supernatant was conditioned with ammonium sulfate and after membrane filtration loaded onto a 1 mL monolith.
View Article and Find Full Text PDFEnveloped virus-like particles (VLPs) are increasingly used as vaccines and immunotherapeutics. Frequently, very time consuming density gradient centrifugation techniques are used for purification of VLPs. However, the progress towards optimized large-scale VLP production increased the demand for fast, cost efficient and scale able purification processes.
View Article and Find Full Text PDFIn this work, phenylboronic acid (PBA) was thoroughly investigated as a synthetic ligand for the purification of an immunoglobulin G (IgG) from a clarified cell supernatant from Chinese Hamster Ovary (CHO) cell cultures. In particular, the study was focused on the development of a washing step and in the optimization of the elution step using a serum containing supernatant. From the different conditions tested, best recoveries - 99% - and purifications - protein purity of 81% and a purification factor of 16 out of a maximum of 20 - were achieved using 100mM d-sorbitol in 10mM Tris-HCl as washing buffer and 0.
View Article and Find Full Text PDFHarnessing of a branched structure is a novel approach in the design of cell-penetrating peptides and it has provided highly efficient transfection reagents for intracellular delivery of nucleic acids. The new stearylated TP10 analogs, NickFects, condense plasmid DNA, splice correcting oligonucleotides and short interfering RNAs into stable nanoparticles with a size of 62-160nm. Such nanoparticles have a negative surface charge (-11 to -18mV) in serum containing medium and enable highly efficient gene expression, splice correction and gene silencing.
View Article and Find Full Text PDFHomologous recombination (HR) has a major impact in bacterial evolution. Most of the knowledge about the mechanisms and control of HR in bacteria has been obtained in fast growing bacteria. However, in their natural environment bacteria frequently meet adverse conditions which restrict the growth of cells.
View Article and Find Full Text PDFThe rpoB gene encoding for beta subunit of RNA polymerase is a target of mutations leading to rifampicin resistant (Rif(r)) phenotype of bacteria. Here we have characterized rpoB/Rif(r) system in Pseudomonas aeruginosa and Pseudomonas putida as a test system for studying mutational processes. We found that in addition to the appearance of large colonies which were clearly visible on Rif selective plates already after 24h of plating, small colonies grew up on these plates for 48 h.
View Article and Find Full Text PDFRpoS is a bacterial sigma factor of RNA polymerase which is involved in the expression of a large number of genes to facilitate survival under starvation conditions and other stresses. The results of our study demonstrate that the frequency of emergence of base substitution mutants is significantly increased in long-term-starved populations of rpoS-deficient Pseudomonas putida cells. The increasing effect of the lack of RpoS on the mutation frequency became apparent in both a plasmid-based test system measuring Phe(+) reversion and a chromosomal rpoB system detecting rifampin-resistant mutants.
View Article and Find Full Text PDFNucleotide excision repair (NER) is one of the most important repair systems which counteracts different forms of DNA damage either induced by various chemicals or irradiation. At the same time, less is known about the functions of NER in repair of DNA that is not exposed to exogenous DNA-damaging agents. We have investigated the role of NER in mutagenesis in Pseudomonas putida.
View Article and Find Full Text PDFOxidative damage of DNA is a source of mutation in living cells. Although all organisms have evolved mechanisms of defense against oxidative damage, little is known about these mechanisms in nonenteric bacteria, including pseudomonads. Here we have studied the involvement of oxidized guanine (GO) repair enzymes and DNA-protecting enzyme Dps in the avoidance of mutations in starving Pseudomonas putida.
View Article and Find Full Text PDFTranscription of the plasmid-borne phenol catabolic operon pheBA in Pseudomonas putida is activated by the LysR-family regulator CatR in the presence of the effector molecule cis,cis-muconate (CCM), which is an intermediate of the phenol degradation pathway. In addition to the positive control of the operon, several factors negatively affect transcription initiation from the pheBA promoter. First, the activation of the pheBA operon depends on the extracellular concentration of phenol.
View Article and Find Full Text PDFSeveral bacterial species carry in their genomes a so-called "mutagenesis" gene cluster encoding ImuB which is similar to Y-family DNA polymerases, and DnaE2 related to the catalytic subunit DnaE of Pol III. Y-family DNA polymerases are known to be involved in stationary-phase mutagenesis and DnaE2 homologues characterized so far have expressed a mutator phenotype. In this study, we raised a question about the involvement of ImuB and DnaE2 in stationary-phase mutagenesis.
View Article and Find Full Text PDFOne of the popular ideas is that decline in methyl-directed mismatch repair (MMR) in carbon-starved bacteria might facilitate occurrence of stationary-phase mutations. We compared the frequency of accumulation of stationary-phase mutations in carbon-starved Pseudomonas putida wild-type and MMR-defective strains and found that knockout of MMR system increased significantly emergence of base substitutions in starving P. putida.
View Article and Find Full Text PDFPlasmids in conjunction with other mobile elements such as transposons are major players in the genetic adaptation of bacteria in response to changes in environment. Here we show that a large catabolic TOL plasmid, pWW0, from Pseudomonas putida carries genes (rulAB genes) encoding an error-prone DNA polymerase Pol V homologue which increase the survival of bacteria under conditions of accumulation of DNA damage. A study of population dynamics in stationary phase revealed that the presence of pWW0-derived rulAB genes in the bacterial genome allows the expression of a strong growth advantage in stationary phase (GASP) phenotype of P.
View Article and Find Full Text PDFIn this work we studied involvement of DNA polymerase IV (Pol IV) (encoded by the dinB gene) in stationary-phase mutagenesis in Pseudomonas putida. For this purpose we constructed a novel set of assay systems that allowed detection of different types of mutations (e.g.
View Article and Find Full Text PDFStationary-phase mutations occur in populations of stressed, nongrowing, and slowly growing cells and allow mutant bacteria to overcome growth barriers. Mutational processes in starving cells are different from those occurring in growing bacteria. Here, we present evidence that changes in mutational processes also take place during starvation of bacteria.
View Article and Find Full Text PDFExpression of the phenol degradation pathway in Pseudomonas putida strain PaW85 requires coordinated transcription of the plasmid-borne pheBA operon encoding catechol 1,2-dioxygenase and phenol monooxygenase, respectively, and the chromosomally encoded catechol degradation catBCA operon. Transcriptional activation from the pheBA and catBCA promoters is regulated by CatR and the catechol degradation pathway intermediate cis,cis-muconate. Here it is shown that physiological control mechanisms are superimposed on this regulatory system.
View Article and Find Full Text PDFThe promoter of the plasmid-borne pheBA genes encoding enzymes for phenol degradation resembles the catBCA promoter and is activated by CatR, the regulator of the chromosomally encoded catechol-degradative catBCA genes in Pseudomonas putida. In this study, site-directed mutagenesis of the pheBA promoter region was performed. The interrupted inverted repeat sequence of the CatR recognition binding site (RBS) of the pheBA promoter is highly homologous to that of the catBCA promoter.
View Article and Find Full Text PDF