Publications by authors named "Andres R Alcantara"

The focus of the present work is to find the optimal conditions for the activation of agarose beads with divinyl sulfone (DVS). The reactivity of the vinyl sulfone groups in the support was checked by the support capacity to react with ethylamine; via elemental analysis. In addition, trypsin was used as a model enzyme to test the immobilization and stabilization capabilities of the different supports.

View Article and Find Full Text PDF

Ficin fully immobilized on Asp-agarose beads at pH 7 but not on an aminated support. This made enzyme adsorption plus glutaraldehyde modification non-viable for this enzyme. Modifying glyoxyl-agarose beads with mixtures of Asp and 1,6-hexamethylenediamine (HA) at different ratios, mixed anion/cation exchanger supports were built.

View Article and Find Full Text PDF

Cancer and bacterial infections rank among the most significant global health threats. accounting for roughly 25 million fatalities each year. This statistic underscores the urgent necessity for developing novel drugs, enhancing current treatments, and implementing systems that boost their bioavailability to achieve superior therapeutic outcomes.

View Article and Find Full Text PDF

Immobilization of enzymes on aminated supports using the glutaraldehyde chemistry may involve three different interactions, cationic, hydrophobic, and covalent interactions. To try to understand the impact this heterofunctionality, we study the physical adsorption of the beta-galactosidase from Aspergillus niger, on aminated supports (MANAE) and aminated supports with one (MANAE-GLU) or two molecules of glutaraldehyde (MANAE-GLU-GLU). To eliminate the chemical reactivity of the glutaraldehyde, the supports were reduced using sodium borohydride.

View Article and Find Full Text PDF

Introduction: Alzheimer's disease is a multifactorial neurodegenerative disorder characterized by beta-amyloid accumulation and tau protein hyperphosphorylation. The disease involves interconnected mechanisms, which can be clustered into two target-packs based on the affected proteins. Pack-1 focuses on beta-amyloid accumulation, oxidative stress, and metal homeostasis dysfunction, and Pack-2 involves tau protein, calcium homeostasis, and neuroinflammation.

View Article and Find Full Text PDF

An easy and versatile method was designed and applied successfully to obtain access to lipase-based cross-linked-enzyme aggregate-like copolymers (CLEA-LCs) using one-pot, consecutive cross-linking steps using two types of homobifunctional cross-linkers (glutaraldehyde and putrescine), mediated with amine activation through pH alteration (pH jump) as a key step in the process. Six lipases were utilised in order to assess the effectiveness of the technique, in terms of immobilization yields, hydrolytic activities, thermal stability and application in kinetic resolution. A good retention of catalytic properties was found for all cases, together with an important thermal and storage stability improvement.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) regulates dendritic branching and dendritic spine morphology, as well as synaptic plasticity and long-term potentiation. Consequently, BDNF deficiency has been associated with some neurological disorders such as Alzheimer's, Parkinson's or Huntington's diseases. In contrast, elevated BDNF levels correlate with recovery after traumatic central nervous system (CNS) injuries.

View Article and Find Full Text PDF

l-Theanine (l-Th) was synthesized by simply mixing the reactants (l-glutamine and ethylamine in water) at 25 °C and Bacillus subtilis γ-glutamyl transferase (BsGGT) covalently immobilized on glyoxyl-agarose according to a methodology previously reported by our research group; neither buffers, nor other additives were needed. Ratio of l-glutamine (donor) to ethylamine (acceptor), pH, enzymatic units (IU), and reaction time were optimized (molar ratio of donor/acceptor=1 : 8, pH 11.6, 1 IU mL , 6 h), furnishing l-Th in 93 % isolated yield (485 mg, 32.

View Article and Find Full Text PDF

The necessity of more sustainable conditions that follow the twelve principles of Green Chemistry have pushed researchers to the development of novel reagents, catalysts and solvents for greener asymmetric methodologies. Solvents are in general a fundamental part for developing organic processes, as well as for the separation and purification of the reaction products. By this reason, in the last years, the application of the so-called green solvents has emerged as a useful alternative to the classical organic solvents.

View Article and Find Full Text PDF

Introduction: Biocatalysis has emerged as a powerful and useful strategy for the synthesis of active pharmaceutical ingredients (APIs). The outstanding developments in molecular biology techniques allow nowadays the screening, large-scale production, and designing of biocatalysts, adapting them to desired reactions. Many enzymes can perform reactions both in aqueous and non-aqueous media, broadening even further the opportunities to integrate them in complex pharmaceutical multi-step syntheses.

View Article and Find Full Text PDF

In their Editorial for the Special Issue on Biocatalysis as Key to Sustainable Industrial Chemistry, Guest Editors Andrés Alcántara, Pablo Domínguez de María, Jennifer Littlechild, and Roland Wohlgemuth and their co-workers on the European Society of Applied Biocatalysis' (ESAB) Working Group on Sustainable Chemistry Martin Schürmann and Roger Sheldon discuss the Special Issue and the importance of biocatalysis in carrying out cutting-edge industrial chemistry in a sustainable way, as well as the future prospects for the field.

View Article and Find Full Text PDF

Invited for this month's cover is the Working Group Sustainable Chemistry of the European Society of Applied Biocatalysis (ESAB). The image shows the significant contributions of Biocatalysis to science, industry, society, and environment as a technology of first choice for Sustainable Chemistry in the 21st century. The Perspective itself is available at 10.

View Article and Find Full Text PDF

The role and power of biocatalysis in sustainable chemistry has been continuously brought forward step by step to its present outstanding position. The problem-solving capabilities of biocatalysis have been realized by numerous substantial achievements in biology, chemistry and engineering. Advances and breakthroughs in the life sciences and interdisciplinary cooperation with chemistry have clearly accelerated the implementation of biocatalytic synthesis in modern chemistry.

View Article and Find Full Text PDF

Apart from being one of the most important intermediates in chemical synthesis, broadly used in the formation of C-C bonds among other processes, the β-dicarbonyl structure is present in a huge number of biologically and pharmaceutically active compounds. In fact, mainly derived from the well-known antioxidant capability associated with the corresponding enol tautomer, β-diketones are valuable compounds in the treatment of many pathological disorders, such as cardiovascular and liver diseases, hypertension, obesity, diabetes, neurological disorders, inflammation, skin diseases, fibrosis, or arthritis; therefore, the synthesis of these structures is an area of overwhelming interest for organic chemists. This paper is devoted to the advances achieved in the last ten years for the preparation of 1,3-diketones, using different chemical (Claisen, hydration of alkynones, decarboxylative coupling) or catalytic (biocatalysis, organocatalytic, metal-based catalysis) methodologies: Additionally, the preparation of branched β-dicarbonyl compounds by means of α-functionalization of non-substituted 1,3-diketones are also discussed.

View Article and Find Full Text PDF

Chitosan has garnered much interest due to its properties and possible applications. Every year the number of publications and patents based on this polymer increase. Chitosan exhibits poor solubility in neutral and basic media, limiting its use in such conditions.

View Article and Find Full Text PDF

The intrinsic degradative α-elimination of Li carbenoids somehow complicates their use in synthesis as C1-synthons. Nevertheless, we herein report how boosting such an α-elimination is a straightforward strategy for accomplishing controlled ring-opening of epoxides to furnish the corresponding β-halohydrins. Crucial for the development of the method is the use of the eco-friendly solvent 2-MeTHF, which forces the degradation of the incipient monohalolithium, due to the very limited stabilizing effect of this solvent on the chemical integrity of the carbenoid.

View Article and Find Full Text PDF

Benzil reductases are dehydrogenases preferentially active on aromatic 1,2-diketones, but the reasons for this peculiar substrate recognition have not yet been clarified. The benzil reductase (KRED1-Pglu) from the non-conventional yeast Pichia glucozyma showed excellent activity and stereoselectivity in the monoreduction of space-demanding aromatic 1,2-dicarbonyls, making this enzyme attractive as biocatalyst in organic chemistry. Structural insights into the stereoselective monoreduction of 1,2-diketones catalyzed by KRED1-Pglu were investigated starting from its 1.

View Article and Find Full Text PDF

The use of magnetic biocatalysts is highly beneficial in bioprocesses technology, as it allows their easy recovering and enhances biocatalyst lifetime. Thus, it simplifies operational processing and increases efficiency, leading to more cost-effective processes. The use of small-size matrices as carriers for enzyme immobilization enables to maximize surface area and catalysts loading, also reducing diffusion limitations.

View Article and Find Full Text PDF

The increasing relevance of cascade reactions in biocatalysis has sparked a great interest for enzyme co-immobilization. Enzyme co-immobilization allows access to some kinetic advantages that in some instances are necessary to get the desired product, avoiding side-reactions. However, the kinetic effect is very relevant mainly at the initial reaction rates, while it may be less relevant in the whole reaction course, depending on the kinetic parameters of the involved enzymes.

View Article and Find Full Text PDF

: Alzheimer's disease (AD), the most common type of dementia among older adults, is a chronic neurodegenerative pathology that causes a progressive loss of cognitive functioning with a decline of rational skills. It is well known that AD is multifactorial, so there are many different pharmacological targets that can be pursued. : The authors highlight the strategic value of privileged scaffolds in a multi-target lead compound generation against AD, exploring the concept of multi-target design, with a special emphasis on hybrid compounds.

View Article and Find Full Text PDF

Lipases are the most widely used enzymes in biocatalysis, and the most utilized method for enzyme immobilization is using hydrophobic supports at low ionic strength. This method allows the one step immobilization, purification, stabilization, and hyperactivation of lipases, and that is the main cause of their popularity. This review focuses on these lipase immobilization supports.

View Article and Find Full Text PDF

The aim of this paper is to study the catalytic behaviour of silver nanoparticles (AgNps) produced using low molecular weight chitosan (LMWC) samples depolymerized by an enzymatic method, using either lysozyme or chitosanase. The ability of four sets of silver nanoparticles to reduce Toluidine Blue (TBO) was used as test reaction, and the effect of both catalyst concentration and reaction temperature on the effectiveness of the catalytic reduction was assessed. Generally speaking, AgNps produced through chitosan depolymerization with lysozyme showed better performance than those ones produced using chitosanase.

View Article and Find Full Text PDF

The quest for sustainable solvents is currently a matter of intense research and development, as solvents significantly contribute heavily to the waste generated by chemical industries. Cyclopentyl methyl ether (CPME) is a promising eco-friendly solvent with valuable properties such as low peroxide formation rate, stability under basic and acidic conditions, and relatively high boiling point. This Review discusses the potential use of CPME for applications in biotechnology (e.

View Article and Find Full Text PDF

Different chemoenzymatic strategies for the preparation of carbohydrates and analogues possessing antidiabetic or anticancer activity are summarized. In this sense, some examples illustrating the use of enzymes such as aldolases, lipases or glycosidases (in some cases improved by genetic engineering techniques) are presented, showing the advantages of the implementation of chemoenzymatic protocols, which combine the flexibility of chemical synthesis with the efficiency, selectivity and sustainability of biotransformations to obtain diverse complex carbohydrates, glycoconjugates and glycomimetics.

View Article and Find Full Text PDF