Plant Dis
December 2024
Visual detection of stromata (brown-black, elevated fungal fruiting bodies) is the primary method for quantifying tar spot early in the season because these structures are definitive signs of the disease and essential for effective disease monitoring and management. Here, we present the Stromata Contour Detection Algorithm version 2 (SCDA v2), which addresses the limitations of the previously developed SCDA version 1 (SCDA v1), without the need to empirically search for optimal decision-making input parameters (DMIPs) while achieving higher and consistent accuracy in tar spot stromata detection. SCDA v2 operates in two components: (i) SCDA v1 producing tar spot-like region proposals for a given input corn leaf Red-Green-Blue (RGB) image and (ii) a pretrained convolutional neural network (CNN) classifier identifying true tar spot stromata from the region proposals.
View Article and Find Full Text PDFQuantifying symptoms of tar spot of corn has been conducted through visual-based estimations of the proportion of leaf area covered by the pathogenic structures generated by (stromata). However, this traditional approach is costly in terms of time and labor, as well as prone to human subjectivity. An objective and accurate method, which is also time and labor-efficient, is of an urgent need for tar spot surveillance and high-throughput disease phenotyping.
View Article and Find Full Text PDF