Publications by authors named "Andres Oss"

We present a first report on the detection of three different C6 conformers of cellulose in spruce, as revealed by solid-state 1H-13C correlation spectra. The breakthrough in 1H resolution is achieved by magic-angle spinning in the regime of 150 kHz. The suppression of dense dipolar network of 1H provides inverse detected 13C spectra at a good sensitivity even in natural samples.

View Article and Find Full Text PDF

Proton-detected solid-state NMR has emerged as a powerful analytical technique in structural elucidation via H-H correlations, which are mostly established by broadband methods. We propose a new class of frequency-selective homonuclear recoupling methods to selectively enhance H-H correlations of interest under ultrafast magic-angle spinning (MAS). These methods, dubbed as selective phase-optimized recoupling (SPR), can provide a sensitivity enhancement by a factor of ∼3 over the widely used radio-frequency-driven recoupling (RFDR) to observe H-H contacts in a protonated tripeptide -formyl-Met-Leu-Phe (fMLF) under 150 kHz MAS and are successfully utilized to probe a long-range H-H contact in a pharmaceutical molecule, the hydrochloride form of pioglitazone (PIO-HCl).

View Article and Find Full Text PDF

Spectral resolution is the key to unleashing the structural and dynamic information contained in NMR spectra. Fast magic-angle spinning (MAS) has recently revolutionized the spectroscopy of biomolecular solids. Herein, we report a further remarkable improvement in the resolution of the spectra of four fully protonated proteins and a small drug molecule by pushing the MAS rotation frequency higher (150 kHz) than the more routinely used 100 kHz.

View Article and Find Full Text PDF

We report linewidth and proton T, T and T' relaxation data of the model protein ubiquitin acquired at MAS frequencies up to 126 kHz. We find a predominantly linear improvement in linewidths and coherence decay times of protons with increasing spinning frequency in the range from 93 to 126 kHz. We further attempt to gain insight into the different contributions to the linewidth at fast MAS using site-specific analysis of proton relaxation parameters and present bulk relaxation times as a function of the MAS frequency.

View Article and Find Full Text PDF

We report the preparation of protofibrils from oligomeric Aβ40 aggregates, which have been incubated under spatially constrained conditions. The molecular structure of the resultant protofibrils is highly homogeneous, suggesting that the phenomenon of structural polymorphism commonly observed in Aβ40 fibrils may be largely due to multiple nucleation events.

View Article and Find Full Text PDF

Recent developments in magic angle spinning (MAS) technology permit spinning frequencies of ≥100 kHz. We examine the effect of such fast MAS rates upon nuclear magnetic resonance proton line widths in the multi-spin system of β-Asp-Ala crystal. We perform powder pattern simulations employing Fokker-Plank approach with periodic boundary conditions and H-chemical shift tensors calculated using the bond polarization theory.

View Article and Find Full Text PDF

Solid-state NMR is becoming a viable alternative for obtaining information about structures and dynamics of large biomolecular complexes, including ones that are not accessible to other high-resolution biophysical techniques. In this context, methods for probing protein-protein interfaces at atomic resolution are highly desirable. Solvent paramagnetic relaxation enhancements (sPREs) proved to be a powerful method for probing protein-protein interfaces in large complexes in solution but have not been employed toward this goal in the solid state.

View Article and Find Full Text PDF

NMR spectroscopy is a prime technique for characterizing atomic-resolution structures and dynamics of biomolecular complexes but for such systems faces challenges of sensitivity and spectral resolution. We demonstrate that the application of (1)H-detected experiments at magic-angle spinning frequencies of >50 kHz enables the recording, in a matter of minutes to hours, of solid-state NMR spectra suitable for quantitative analysis of protein complexes present in quantities as small as a few nanomoles (tens of micrograms for the observed component). This approach enables direct structure determination and quantitative dynamics measurements in domains of protein complexes with masses of hundreds of kilodaltons.

View Article and Find Full Text PDF

Solid-state NMR spectroscopy is an emerging tool for structural studies of crystalline, membrane-associated, sedimented, and fibrillar proteins. A major limitation for many studies is still the large amount of sample needed for the experiments, typically several isotopically labeled samples of 10-20 mg each. Here we show that a new NMR probe, pushing magic-angle sample rotation to frequencies around 100 kHz, makes it possible to narrow the proton resonance lines sufficiently to provide the necessary sensitivity and spectral resolution for efficient and sensitive proton detection.

View Article and Find Full Text PDF