The biorefinery concept integrates processes and technologies for an efficient biomass conversion using all components of a feedstock. Sargassum muticum is an invasive brown algae which could be regarded as a renewable resource susceptible of individual valorization of the constituent fractions into high added-value compounds. Microwave drying technology can be proposed before conventional ethanol extraction of algal biomass, and supercritical fluid extraction with CO2 was useful to extract fucoxanthin and for the fractionation of crude ethanol extracts.
View Article and Find Full Text PDFThe biomass components of the invasive seaweed Sargassum muticum were fractionated to allow their separate valorization. S. muticum (Sm) and the solid residue remaining after alginate extraction of this seaweed (AESm) were processed with hot, compressed water (hydrothermal processing) to assess the effects of temperature on fucoidan solubilization.
View Article and Find Full Text PDFSamples of rice husks, Eucalyptus globulus wood and Pinus pinaster wood (containing arabinoxylan, acetylated glucuronoxylan and acetylated glucomannan as major hemicellulose components, respectively) were subjected to autohydrolysis. The resulting liquid phases, containing mainly hemicellulose-derived saccharides, were refined by physicochemical methods to reduce their contents of monosaccharides and non-saccharide compounds. Raw autohydrolysis liquors and refined concentrates coming from aqueous treatments were assayed for antioxidant activity using the following assays: reducing power (FRAP), DPPH and ABTS radical scavenging activity and protection of β-carotene-linoleic emulsions from oxidation.
View Article and Find Full Text PDFCytisus scoparius L. is used in folk medicine for the treatment of several ailments in which the antioxidant and anti-inflammatory effects of its carotenoid and flavonoid content is suggested to play an important role. We postulate that flavonoid- and carotenoid-rich extracts from C.
View Article and Find Full Text PDFResearch on the bioactives from seaweeds has increased in recent years. Antioxidant activity is one of the most studied, due to the interest of these compounds both as preservatives and protectors against oxidation in food and cosmetics and also due to their health implications, mainly in relation to their potential as functional ingredients. Brown algae present higher antioxidant potential in comparison with red and green families and contain compounds not found in terrestrial sources.
View Article and Find Full Text PDFGrape and wine byproducts have been extensively studied for the recovery of phenolic compounds with antioxidant activity and a variety of biological actions. The selective recovery and concentration of the phenolic compounds from the liquid phase separated from further diluted winery wastes has been proposed. Adsorption onto non ionic polymeric resins and further desorption with ethanolic solutions was studied.
View Article and Find Full Text PDFThe phenolic fractions released during hydrothermal treatment of selected feedstocks (corn cobs, eucalypt wood chips, almond shells, chestnut burs, and white grape pomace) were selectively recovered by extraction with ethyl acetate and washed with ethanol/water solutions. The crude extracts were purified by a relatively simple adsorption technique using a commercial polymeric, nonionic resin. Utilization of 96% ethanol as eluting agent resulted in 47.
View Article and Find Full Text PDFIn this study, hydroalcoholic leaf extracts of Couroupita guianensis were examined for antioxidant activity, phytochemical and total phenolic composition, stimulation of human skin fibroblast (HSF) proliferation and UV-absorption. The radical scavenging capacity, reducing power and protection against joint oxidation of linoleic acid and β-carotene bleaching oxidation in emulsion were used to evaluate the antioxidant activity. The results of this study strongly indicate in vitro antioxidant activity, which may be due to the presence of a high total phenolic content.
View Article and Find Full Text PDFThe liquid phase from nonisothermal autohydrolysis of barley husks was extracted with ethyl acetate and redissolved in ethanol to yield a crude extract (denoted BHEAE), which was subjected to further processing to enhance the antioxidant activity. A fractionation method, carried out for characterization purposes, consisted of the extraction of BHEAE with organic solvents of increasing polarity and further fractionation in Sephadex LH-20. Among the tested solvents, ethyl acetate allowed the highest yield, phenolic content, and antioxidant activity.
View Article and Find Full Text PDFLiquors from water treatments of rice husks (containing soluble xylan-derived products) were processed with NF and UF membranes for concentrating and removing both monosaccharides and non-saccharide compounds. Among the commercial membranes assayed, the best results were achieved with the 4 kDa polymeric tubular ESP04 (PCI Membranes), and the 1 kDa ceramic monolithic Kerasep Nano (Novasep). Several trade-offs were identified both in membrane selection and in operating conditions.
View Article and Find Full Text PDFSupercritical fluid extraction (SCFE), based on the utilization of a fluid under supercritical conditions, is a technology suitable for extraction and purification of a variety of compounds, particularly those that have low volatility and/or are susceptible to thermal degradation. The interest in SCFE is promoted by legal limitations of conventional solvents for food and pharmaceutical uses. The physicochemical properties of supercritical CO2 (higher diffusivity, lower viscosity, and lower surface tension than conventional solvents) facilitate mass transfer and allow an environmentally friendly operation.
View Article and Find Full Text PDFA waste effluent from a soymeal concentrates plant was centrifuged and ultrafiltered by successive processing in membranes of 10, 30, and 50 kDa, with further concentration of the resulting stream using a 5 kDa membrane. The separated fractions (5-10, 10-30, 30-50, and >50 kDa) were subjected to chemical, nutritional, and functional characterization. Resuspension of the retentates in salt-containing systems improved the protein solubility, the emulsifying capacity, and the gelation capacity, whereas the emulsion stability and the foam capacity and stability decreased with respect to the values obtained using distilled water, and the oil absorption capacity was not affected.
View Article and Find Full Text PDF