RNA polymerase-binding RNA aptamers (RAPs) are natural RNA elements that control transcription in cis by directly contacting RNA polymerase. Many RAPs inhibit transcription by inducing Rho-dependent termination in Escherichia coli. Here, we studied the role of inhibitory RAPs (iRAPs) in modulation of antisense transcription (AT) using in silico and in vivo approaches.
View Article and Find Full Text PDFThe bacterium is native to aquatic environments and can switch lifestyles to cause disease in humans. Lifestyle switching requires modulation of genetic systems for quorum sensing, intestinal colonization, and toxin production. Much of this regulation occurs at the level of gene expression and is controlled by transcription factors.
View Article and Find Full Text PDFIn search for RNA signals that modulate transcription via direct interaction with RNA polymerase (RNAP), we deep sequenced an E. coli genomic library enriched for RNAP-binding RNAs. Many natural RNAP-binding aptamers, termed RAPs, were mapped to the genome.
View Article and Find Full Text PDFAntimicrob Agents Chemother
October 2014
The role of Acinetobacter baumannii ATCC 17978 UmuDC homologs A1S_0636-A1S_0637, A1S_1174-A1S_1173, and A1S_1389 (UmuDAb) in antibiotic resistance acquired through UV-induced mutagenesis was evaluated. Neither the growth rate nor the UV-related survival of any of the three mutants was significantly different from that of the wild-type parental strain. However, all mutants, and especially the umuDAb mutant, were less able to acquire resistance to rifampin and streptomycin through the activities of their error-prone DNA polymerases.
View Article and Find Full Text PDF