Publications by authors named "Andres Macho"

A general-purpose photonic processor can be built integrating a silicon photonic programmable core in a technology stack comprising an electronic monitoring and controlling layer and a software layer for resource control and programming. This processor can leverage the unique properties of photonics in terms of ultra-high bandwidth, high-speed operation, and low power consumption while operating in a complementary and synergistic way with electronic processors. These features are key in applications such as next-generation 5/6 G wireless systems where reconfigurable filtering, frequency conversion, arbitrary waveform generation, and beamforming are currently provided by microwave photonic subsystems that cannot be scaled down.

View Article and Find Full Text PDF

In this paper, we evaluate experimentally and model theoretically the intra- and inter-core crosstalk between the polarized core modes in single-mode multi-core fiber media including temporal and longitudinal birefringent effects. Specifically, extensive experimental results on a four-core fiber indicate that the temporal fluctuation of fiber birefringence modifies the intra- and inter-core crosstalk behavior in both linear and nonlinear optical power regimes. To gain theoretical insight into the experimental results, we introduce an accurate multi-core fiber model based on local modes and perturbation theory, which is derived from the Maxwell equations including both longitudinal and temporal birefringent effects.

View Article and Find Full Text PDF

In this paper we evaluate experimentally and model theoretically the nonlinear crosstalk random process in multi-core fiber. The experimental results indicate that mode coupling in multi-core fibers is reduced in presence of fiber Kerr nonlinearities. An analytical study of the inter-core crosstalk probability density function in nonlinear regime is performed, where the theoretical distribution, derived from the nonlinear coupled-mode equation, is experimentally validated in homogeneous four-core fiber.

View Article and Find Full Text PDF