BMC Med Inform Decis Mak
March 2022
Background: Overcrowding is a serious problem that impacts the ability to provide optimal level of care in a timely manner. High patient volume is known to increase the boarding time at the emergency department (ED), as well as at post-anesthesia care unit (PACU). Furthermore, the same high volume increases inpatient bed transfer times, which causes delays in elective surgeries, increases the probability of near misses, patient safety incidents, and adverse events.
View Article and Find Full Text PDFA diverse universe of statistical models in the literature aim to help hospitals understand the risk factors of their preventable readmissions. However, these models are usually not necessarily applicable in other contexts, fail to achieve good discriminatory power, or cannot be compared with other models. We built and compared predictive models based on machine learning algorithms for 30-day preventable hospital readmissions of Medicare patients.
View Article and Find Full Text PDFBackground: Important barriers for widespread use of health information exchange (HIE) are usability and interface issues. However, most HIEs are implemented without performing a needs assessment with the end users, healthcare providers. We performed a user needs assessment for the process of obtaining clinical information from other health care organizations about a hospitalized patient and identified the types of information most valued for medical decision-making.
View Article and Find Full Text PDF