Vacuum polarization (VP) and electron self-energy (SE) are implemented and evaluated as quantum electrodynamic (QED) corrections in a (quasi-relativistic) two-component zeroth order regular approximation (ZORA) framework. For VP, the Uehling potential is considered, and for SE, the effective potentials proposed by Flambaum and Ginges as well as the one proposed by Pyykkö and Zhao. QED contributions to ionization energies of various atoms and group 2 monofluorides, group 1 and 11 valence orbital energies, 2P1/2 ← 2S1/2 and 2P3/2 ← 2S1/2 transition energies of Li-, Na-, and Cu-like ions of nuclear charge Z = 10, 20, …, 90 as well as Π1/2 ← Σ1/2 and Π3/2 ← Σ1/2 transition energies of BaF and RaF are presented.
View Article and Find Full Text PDFFundamental weak interactions have been shown to violate parity in both nuclear and atomic systems. However, observation of parity violation in a molecular system has proven an elusive target. Nuclear spin dependent contributions of the weak interaction are expected to result in energetic differences between enantiomers manifesting in nuclear magnetic resonance (NMR) spectra as chemical shift differences in the order of parts-per-trillion to parts-per-billion (μHz to mHz) for high- nuclei.
View Article and Find Full Text PDF