Publications by authors named "Andres Diaz-Mendez"

In vitro three-dimensional organoid models simulate key aspects of the structure and function of in vivo organs and have been used to study physiology, host-pathogen interactions, pathogenesis and pharmacodynamics. Although most organoid studies have been developed using human or mouse tissues, recent advancements have enabled the establishment of intestinal and respiratory tract organoids from domestic animal samples. Mycoplasma bovis causes chronic respiratory tract infections in cattle with significant health and economic consequences.

View Article and Find Full Text PDF
Article Synopsis
  • Infectious laryngotracheitis (ILT) is a major issue for the poultry industry, caused by the infectious laryngotracheitis virus (ILTV), leading to animal welfare concerns and economic losses.
  • This study compared the interactions between a glycoprotein G deletion mutant vaccine strain of ILTV and its wild-type strain in chicken cell cultures, revealing distinct gene expression patterns in different cell types.
  • Results indicated that the type of chicken cells used had a bigger impact on host and viral gene transcription than the presence or absence of the gG gene, emphasizing the need for careful cell-line choice in future research on these virus interactions.
View Article and Find Full Text PDF

Infectious bronchitis virus (IBV), an avian coronavirus, can be isolated and cultured in tracheal organ cultures (TOCs), embryonated eggs and cell cultures, the first two of which are commonly used for viral isolation. Previous studies have suggested that foetal bovine serum (FBS) can inhibit coronavirus replication in cell cultures. In this study, the replication of IBV in chicken embryo kidney (CEK) cell cultures and the Leghorn hepatocellular carcinoma (LMH) cell line was assessed using two different cell culture media containing FBS or yeast extract (YE) and two different IBV strains.

View Article and Find Full Text PDF

Background: Equid gammaherpesvirus 5 (EHV5) is closely related to equid gammaherpesvirus 2 (EHV2). Detection of EHV5 is frequent in horse populations worldwide, but it is often without a clear and significant clinical impact. Infection in horses can often present as subclinical disease; however, it has been associated with respiratory disease, including equine multinodular pulmonary fibrosis (EMPF).

View Article and Find Full Text PDF
Article Synopsis
  • Equid gammaherpesvirus 2 (EHV2) is a virus found in horses that can cause respiratory disease in foals and has a diverse genetic makeup, with varying strains commonly co-existing in infected horses.
  • Whole genome sequencing of 20 EHV2 isolates revealed significant differences in genome size, nucleotide sequence identity, and evidence of genetic recombination among the strains.
  • The study suggests that the genetic diversity and evolutionary changes in EHV2 are largely influenced by recombination, highlighting its importance in the virus's adaptation and pathogenicity.
View Article and Find Full Text PDF

Infectious laryngotracheitis virus (ILTV, Gallid alphaherpesvirus 1) causes severe respiratory disease in chickens and has a major impact on the poultry industry worldwide. Live attenuated vaccines are widely available and are administered early in the life of commercial birds, often followed by one or more rounds of revaccination, generating conditions that can favour recombination between vaccines. Better understanding of the factors that contribute to the generation of recombinant ILTVs will inform the safer use of live attenuated herpesvirus vaccines.

View Article and Find Full Text PDF

Wobbly possum disease virus (WPDV) is an arterivirus that was originally identified in common brushtail possums (Trichosurus vulpecula) in New Zealand, where it causes severe neurological disease. In this study, serum samples (n = 188) from Australian common brushtail, mountain brushtail (Trichosurus cunninghami) and common ringtail (Pseudocheirus peregrinus) possums were tested for antibodies to WPDV using ELISA. Antibodies to WPDV were detected in possums from all three species that were sampled in the states of Victoria and South Australia.

View Article and Find Full Text PDF

Latency is an important feature of infectious laryngotracheitis virus (ILTV) yet is poorly understood. This study aimed to compare latency characteristics of vaccine (SA2) and field (CL9) strains of ILTV, establish an reactivation system and examine ILTV infection in peripheral blood mononuclear cells (PBMC) in specific pathogen-free chickens. Birds were inoculated with SA2 or CL9 ILTV and then bled and culled at 21 or 35 days post-inoculation (dpi).

View Article and Find Full Text PDF

Infectious laryngotracheitis virus (ILTV) is an economically significant respiratory pathogen of poultry. Novel recombinant strains of ILTV have emerged in Australia during the last decade and currently class 9 (CL9) and class 10 (CL10) ILTV are the most prevalent circulating strains. This study conducted a comprehensive investigation of the pathogenesis of these two viral strains.

View Article and Find Full Text PDF

Infectious laryngotracheitis virus (ILTV) causes severe respiratory disease in chickens. ILTV can establish latency and reactivate later in life, but there have been few investigations of ILTV latency. This study aimed to contribute to the methodologies available to detect latent ILTV.

View Article and Find Full Text PDF

Infectious laryngotracheitis (ILT) is a respiratory disease that affects chickens. It is caused by the alphaherpesvirus, infectious laryngotracheitis virus (ILTV). This virus undergoes lytic replication in the epithelial cells of the trachea and upper respiratory tract (URT) and establishes latent infection in the trigeminal ganglia (TG) and trachea.

View Article and Find Full Text PDF

Infectious laryngotracheitis (ILT) is an upper respiratory tract disease of chickens that is caused by infectious laryngotracheitis virus (ILTV), an alphaherpesvirus. This disease causes significant economic loses in poultry industries worldwide. Despite widespread use of commercial live attenuated vaccines, many poultry industries continue to experience outbreaks of disease caused by ILTV.

View Article and Find Full Text PDF

Severe equine asthma is a chronic inflammatory condition of the lower airways similar to adult-onset asthma in humans. Exacerbations are characterized by bronchial and bronchiolar neutrophilic inflammation, mucus hypersecretion and airway constriction. In this study we analyzed the gene expression response of the bronchial epithelium within groups of asthmatic and non-asthmatic animals following exposure to a dusty hay challenge.

View Article and Find Full Text PDF

Recombination is closely linked with virus replication and is an important mechanism that contributes to genome diversification and evolution in alphaherpesviruses. Infectious laryngotracheitis (ILTV; Gallid alphaherpesvirus 1) is an alphaherpesvirus that causes respiratory disease in poultry. In the past, natural (field) recombination events between different strains of ILTV generated virulent recombinant viruses that have caused severe disease and economic loss in poultry industries.

View Article and Find Full Text PDF

Recombination is a feature of many alphaherpesviruses that infect people and animals. Infectious laryngotracheitis virus (ILTV; ) causes respiratory disease in chickens, resulting in significant production losses in poultry industries worldwide. Natural (field) ILTV recombination is widespread, particularly recombination between attenuated ILTV vaccine strains to create virulent viruses.

View Article and Find Full Text PDF

Background: Severe equine asthma is a naturally occurring lung inflammatory disease of mature animals characterized by neutrophilic inflammation, bronchoconstriction, mucus hypersecretion and airway remodeling. Exacerbations are triggered by inhalation of dust and microbial components. Affected animals eventually are unable of aerobic performance.

View Article and Find Full Text PDF

To date, recombination between different strains of the avian alphaherpesvirus infectious laryngotracheitis virus (ILTV) has only been detected in field samples using full genome sequencing and sequence analysis. These previous studies have revealed that natural recombination is widespread in ILTV and have demonstrated that recombination between two attenuated ILTV vaccine strains generated highly virulent viruses that produced widespread disease within poultry flocks in Australia. In order to better understand ILTV recombination, this study developed a TaqMan single nucleotide polymorphism (SNP) genotyping assay to detect recombination between two field strains of ILTV (CSW-1 and V1-99 ILTV) under experimental conditions.

View Article and Find Full Text PDF

Many viral agents have been associated with respiratory disease of the horse. The most important viral causes of respiratory disease in horses are equine influenza and the equine alphaherpesviruses. Agents such as equine viral arteritis virus, African horse sickness virus, and Hendra virus establish systemic infections.

View Article and Find Full Text PDF

Objective: To develop a method for experimental induction of equine rhinitis A virus (ERAV) infection in equids and to determine the clinical characteristics of such infection.

Animals: 8 ponies (age, 8 to 12 months) seronegative for antibodies against ERAV. PROCEDURES-Nebulization was used to administer ERAV (strain ERAV/ON/05; n = 4 ponies) or cell culture medium (control ponies; 4) into airways of ponies; 4 previously ERAV-inoculated ponies were reinoculated 1 year later.

View Article and Find Full Text PDF

Enzootic nasal adenocarcinoma (ENA) is a contagious neoplasm of the secretory epithelial cells of the nasal mucosa of sheep and goats. It is associated with the betaretrovirus, enzootic nasal tumor virus (ENTV), but a causative relationship has yet to be demonstrated. In this study, 14-day-old lambs were experimentally infected via nebulization with cell-free tumor filtrates derived from naturally occurring cases of ENA.

View Article and Find Full Text PDF

Equine rhinitis A virus (ERAV) is an ubiquitous virus, routinely identified in equine respiratory infections; however, its role in disease and genetic features are not well defined due to a lack of genomic characterization of the recovered isolates. Therefore, we sequenced the full-length genome of a Canadian ERAV (ERAV/ON/05) and compared it with other ERAV sequences currently available in GenBank. The ERAV/ON/05 genome is 7,839 nucleotides (nts) in length with a variable 5'UTR and a more conserved 3'UTR.

View Article and Find Full Text PDF

The objective of this project was to develop and implement an active surveillance program for the early and rapid detection of equine influenza viruses in Ontario. For this purpose, from October 2003 to October 2005, nasopharyngeal swabs and acute and convalescent serum samples were collected from 115 client-owned horses in 23 outbreaks of respiratory disease in Ontario. Sera were paired and tested for antibody to equine influenza 1 (AE1-H7N7), equine influenza 2 (AE2-H3N8), equine herpesvirus 1 and 4 (EHV1 and EHV4), and equine rhinitis A and B (ERAV and ERBV).

View Article and Find Full Text PDF