A simplified correlation index is proposed to be used in real-time pulse shape recognition systems. This index is similar to the classic Pearson's correlation coefficient, but it can be efficiently implemented in FPGA devices with far fewer logic resources and excellent performance. Numerical simulations with synthetic data and comparisons with the Pearson's correlation show the suitability of the proposed index in applications such as the discrimination and counting of pulses with a predefined shape.
View Article and Find Full Text PDFType 1 diabetes mellitus (T1DM) patients are a significant threat to chronic kidney disease (CKD) development during their life. However, there is always a high chance of delay in CKD detection because CKD can be asymptomatic, and T1DM patients bypass traditional CKD tests during their routine checkups. This study aims to develop and validate a prediction model and nomogram of CKD in T1DM patients using readily available routine checkup data for early CKD detection.
View Article and Find Full Text PDFIn this study, we present a procedure to optimize a set of finite impulse response filter (FIR) coefficients for digital pulse-amplitude measurement. Such an optimized filter is designed using an adapted digital penalized least mean square (DPLMS) method. The effectiveness of the procedure is demonstrated using a dataset from a case study on high-resolution X-ray spectroscopy based on single-photon detection and energy measurements.
View Article and Find Full Text PDFThe front-end electronics (FEE) of the Compact Muon Solenoid (CMS) is needed very low power consumption and higher readout bandwidth to match the low power requirement of its Short Strip application-specific integrated circuits (ASIC) (SSA) and to handle a large number of pileup events in the High-Luminosity Large Hadron Collider (LHC). A low-noise, wide bandwidth, and ultra-low power FEE for the pixel-strip sensor of the CMS has been designed and simulated in a 0.35 µm Complementary Metal Oxide Semiconductor (CMOS) process.
View Article and Find Full Text PDFPersonalized health monitoring of neural signals usually results in a very large dataset, the processing and transmission of which require considerable energy, storage, and processing time. We present bioinspired electroceptive compressive sensing (BeCoS) as an approach for minimizing these penalties. It is a lightweight and reliable approach for the compression and transmission of neural signals inspired by active electroceptive sensing used by weakly electric fish.
View Article and Find Full Text PDFA capacitive electromyography (cEMG) biomedical sensor measures the EMG signal from human body through capacitive coupling methodology. It has the flexibility to be insulated by different types of materials. Each type of insulator will yield a unique skin-electrode capacitance which determine the performance of a cEMG biomedical sensor.
View Article and Find Full Text PDF