Publications by authors named "Andres Chavarria-Krauser"

Regulation of zinc uptake in roots of Arabidopsis thaliana has recently been modeled by a system of ordinary differential equations based on the uptake of zinc, expression of a transporter protein and the interaction between an activator and inhibitor. For certain parameter choices the steady state of this model becomes unstable upon variation in the external zinc concentration. Numerical results show periodic orbits emerging between two critical values of the external zinc concentration.

View Article and Find Full Text PDF

While physicists regularly use mathematical equations to describe natural phenomena, mathematical modeling of biological systems is still not well established and is hampered by communication barriers between experimental and theoretical biologists. In a recent study we developed a mathematical model of zinc uptake and radial transport in Arabidopsis thaliana roots. By refraining from writing many equations in the main text and confining the derivation of formulas to a supplemental file, we attempted to reach both experimentalists and theoreticians likewise.

View Article and Find Full Text PDF

Background And Aims: Zinc uptake in roots is believed to be mediated by ZIP (ZRT-, IRT-like proteins) transporters. Once inside the symplast, zinc is transported to the pericycle, where it exits by means of HMA (heavy metal ATPase) transporters. The combination of symplastic transport and spatial separation of influx and efflux produces a pattern in which zinc accumulates in the pericycle.

View Article and Find Full Text PDF

In yeast (Saccharomyces cerevisiae) and plant roots (Arabidopsis thaliana) zinc enters the cells via influx transporters of the ZIP family. Since zinc is both essential for cell function and toxic at high concentrations, tight regulation is essential for cell viability. We provide new insight into the underlying mechanisms, starting from a general model based on ordinary differential equations and adapting it to the specific cases of yeast and plant root cells.

View Article and Find Full Text PDF

A model of cytosis regulation in growing pollen tubes is developed and simulations presented. The authors address the question on the minimal assumptions needed to describe the pattern of exocytosis and endocytosis reported recently by experimental biologists. Biological implications of the model are also treated.

View Article and Find Full Text PDF

Leaves within a canopy are exposed to a spatially and temporally fluctuating light environment which may cause lateral gradients in leaf internal CO(2) concentration and diffusion between shaded and illuminated areas. In previous studies it was hypothesized that lateral CO(2) diffusion may support leaf photosynthesis, but the magnitude of this effect is still not well understood. In the present study homobaric leaves of Vicia faba or heterobaric leaves of Glycine max were illuminated with lightflecks of different sizes, mimicking sunflecks.

View Article and Find Full Text PDF

Hairy roots are plants genetically transformed by Agrobacterium rhizogenes, which do not produce shoots and are composed mainly by roots. Hairy roots of Ophiorrhiza mungos Linn. are currently gaining interest of pharmacologists, since a secondary product of their metabolism, camptothecin, is used in chemotherapy.

View Article and Find Full Text PDF

This study examines the extent to which lateral gas diffusion can influence intercellular CO(2) concentrations (c(i)) and thus photosynthesis in leaf areas with closed stomata. Leaves were partly greased to close stomata artificially, and effects of laterally diffusing CO(2) into the greased areas were studied by gas-exchange measurement and chlorophyll fluorescence imaging. Effective quantum yields (Delta F/F(m)') across the greased areas were analysed with an image-processing tool and transposed into c(i) profiles, and lateral CO(2) diffusion coefficients (D(C'lat)), directly proportional to lateral conductivities (), were estimated using a one-dimensional (1D) diffusion model.

View Article and Find Full Text PDF

Differential growth processes in root and shoot growth zones are governed by the transport kinetics of auxin and other plant hormones. While gene expression and protein localization of hormone transport facilitators are currently being unraveled using state-of-the-art techniques of live cell imaging, the quantitative analysis of growth reactions is lagging behind because of a lack of suitable methods. A noninvasive technique, based on digital image sequence processing, for visualizing and quantifying highly resolved spatio-temporal root growth processes was applied in the model plant Arabidopsis thaliana and was adapted to provide precise information on differential curvature production activity within the root growth zone.

View Article and Find Full Text PDF

Differential growth curvature rate (DGCR), defined as the spatial derivative of the tropic speed, was derived as a measure of curvature production in cylindrical organs. Its relation to usual concepts, such as curvature (kappa), rate of curvature (dkappa/dt) and differential growth profiles, was determined. A root gravitropism model, testing the hypothesis of one and two motors, exemplified its capabilities.

View Article and Find Full Text PDF

Growing leaves do not expand at a constant rate but exhibit pronounced diel growth rhythms. However, the mechanisms giving rise to distinct diel growth dynamics in different species are still largely unknown. As a first step towards identifying genes controlling rate and timing of leaf growth, we analysed the transcriptomes of rapidly expanding and fully expanded leaves of Populus deltoides Bartr.

View Article and Find Full Text PDF

Plant hormones control many aspects of plant development and play an important role in root growth. Many plant reactions, such as gravitropism and hydrotropism, rely on growth as a driving motor and hormones as signals. Thus, modelling the effects of hormones on expanding root tips is an essential step in understanding plant roots.

View Article and Find Full Text PDF