Murein peptide ligase (Mpl) is an enzyme found in Gram-negative bacteria. It catalyses the addition of tripeptide L-Ala-γ-D-Glu-meso-diaminopimelate to nucleotide precursor UDP-N-acetylmuramic acid during the recycling of peptidoglycan. Although not essential, this enzyme represents an interesting target for antibacterial compounds through the synthesis of alternate substrates whose incorporation into peptidoglycan might be deleterious for the bacterial cell.
View Article and Find Full Text PDFMur ligases (MurC-MurF), a group of bacterial enzymes that catalyze four consecutive steps in the formation of cytoplasmic peptidoglycan precursor, are becoming increasingly adopted as targets in antibacterial drug design. Based on the crystal structure of MurD cocrystallized with thiazolidine-2,4-dione inhibitor I, we have designed, synthesized, and evaluated a series of improved glutamic acid containing 5-benzylidenerhodanine and 5-benzylidenethiazolidine-2,4-dione inhibitors of MurD with IC(50) values up to 28 μM. Inhibitor 37, with an IC(50) of 34 μM, displays a weak antibacterial activity against S.
View Article and Find Full Text PDFD-Alanine:D-alanine ligase (Ddl), an intracellular bacterial enzyme essential for cell wall biosynthesis, is an attractive target for development of novel antimicrobial drugs. This study focused on an extensive evaluation of two families of Ddl inhibitors encountered in our previous research. New members of both families were obtained through similarity search and synthesis.
View Article and Find Full Text PDFMur ligases are involved in cytoplasmic steps of bacterial peptidoglycan biosynthesis and are viable targets for antibacterial drug discovery. We have designed and synthesized a focused chemical library of compounds combining the glutamic acid moiety and the 2-thioxothiazolidin-4-one, thiazolidine-2,4-dione, 2-iminothiazolidin-4-one or imidazolidine-2,4-dione ring connected by a benzylidene group. These compounds were designed to target the d-Glu- and the diphosphate-binding pockets of the MurD active site and were evaluated for inhibition of MurD ligase from Escherichia coli.
View Article and Find Full Text PDFMur ligases are bacterial enzymes involved in the cytoplasmic steps of peptidoglycan biosynthesis and are viable targets for antibacterial drug discovery. We have performed virtual screening for potential ATP-competitive inhibitors targeting MurC and MurD ligases, using a protocol of consecutive hierarchical filters. Selected compounds were evaluated for inhibition of MurC and MurD ligases, and weak inhibitors possessing dual inhibitory activity have been identified.
View Article and Find Full Text PDFMur ligases are essential enzymes involved in the cytoplasmic steps of peptidoglycan synthesis which remain attractive, yet unexploited targets. In order to develop new antibacterial agents, we have designed a series of new MurC and MurD inhibitors bearing amino acid sulfonohydrazide moiety. The L-Leu series of this class displayed the highest enzyme inhibition with IC50 in the concentration range between 100 and 500 µM, with L-Thr, L-Pro and L-Ala derivatives being inactive.
View Article and Find Full Text PDFMurD ligase is one of the key enzymes participating in the intracellular steps of peptidoglycan biosynthesis and constitutes a viable target in the search for novel antibacterial drugs to combat bacterial drug-resistance. We have designed, synthesized, and evaluated a new series of D-glutamic acid-based Escherichia coli MurD inhibitors incorporating the 5-benzylidenethiazolidin-4-one scaffold. The crystal structure of 16 in the MurD active site has provided a good starting point for the design of structurally optimized inhibitors 73-75 endowed with improved MurD inhibitory potency (IC(50) between 3 and 7 μM).
View Article and Find Full Text PDFWe have designed, synthesized, and evaluated 5-benzylidenerhodanine- and 5-benzylidenethiazolidine-2,4-dione-based compounds as inhibitors of bacterial enzyme MurD with E. coli IC(50) in the range 45-206 μM. The high-resolution crystal structure of MurD in complex with (R,Z)-2-(3-[{4-([2,4-dioxothiazolidin-5-ylidene]methyl)phenylamino}methyl)benzamido)pentanedioic acid [(R)-32] revealed details of the binding mode of the inhibitor within the active site and provides a good foundation for structure-based design of a novel generation of MurD inhibitors.
View Article and Find Full Text PDFThe Mur ligases (MurC, MurD, MurE and MurF) catalyze the stepwise synthesis of the UDP-N-acetylmuramoyl-pentapeptide precursor of peptidoglycan. The murC, murD, murE and murF genes from Staphylococcus aureus, a major pathogen, were cloned and the corresponding proteins were overproduced in Escherichia coli and purified as His(6)-tagged forms. Their biochemical properties were investigated and compared to those of the E.
View Article and Find Full Text PDFMur ligases participate in the intracellular path of bacterial peptidoglycan biosynthesis and constitute attractive, although so far underexploited, targets for antibacterial drug discovery. A series of hydroxy-substituted 5-benzylidenethiazolidin-4-ones were synthesized and tested as inhibitors of Mur ligases. The most potent compound 5 a was active against MurD-F with IC(50) values between 2 and 6 microm, making it a promising multitarget inhibitor of Mur ligases.
View Article and Find Full Text PDFEnzymes involved in the biosynthesis of bacterial peptidoglycan represent important targets for development of new antibacterial drugs. Among them, Mur ligases (MurC to MurF) catalyze the formation of the final cytoplasmic precursor UDP-N-acetylmuramyl-pentapeptide from UDP-N-acetylmuramic acid. We present the design, synthesis and biological evaluation of a series of phosphorylated hydroxyethylamines as new type of small-molecule inhibitors of Mur ligases.
View Article and Find Full Text PDFThe peptidoglycan biosynthetic pathway provides an array of potential targets for antibacterial drug design, attractive especially with respect to selective toxicity. Within this pathway, the members of the Mur ligase family are considered as promising emerging targets for novel antibacterial drug design. Based on the available MurD crystal structures co-crystallised with N-sulfonyl glutamic acid inhibitors, a virtual screening campaign was performed, combining three-dimensional structure-based pharmacophores and molecular docking calculations.
View Article and Find Full Text PDFThe ATP-dependent Mur ligases (MurC, MurD, MurE and MurF) successively add L-Ala, D-Glu, meso-A(2)pm or L-Lys, and D-Ala-D-Ala to the nucleotide precursor UDP-MurNAc, and they represent promising targets for antibacterial drug discovery. We have used the molecular docking programme eHiTS for the virtual screening of 1990 compounds from the National Cancer Institute 'Diversity Set' on MurD and MurF. The 50 top-scoring compounds from screening on each enzyme were selected for experimental biochemical evaluation.
View Article and Find Full Text PDFThe terminal dipeptide, D-Ala-D-Ala, of the peptidoglycan precursor UDPMurNAc-pentapetide is a crucial building block involved in peptidoglycan cross-linking. It is synthesized in the bacterial cytoplasm by the enzyme d-alanine:d-alanine ligase (Ddl). Structure-based virtual screening of the NCI diversity set of almost 2000 compounds was performed with a DdlB isoform from Escherichia coli using the computational tool AutoDock 4.
View Article and Find Full Text PDFMur ligases catalyze the biosynthesis of the UDP-MurNAc-pentapeptide precursor of peptidoglycan, an essential polymer of bacterial cell-wall. They constitute attractive targets for the development of novel antibacterial agents. Here we report on the synthesis of a series of 2,4-diaminoquinazolines, quinazoline-2,4(1H,3H)-diones, 5-benzylidenerhodanines and 5-benzylidenethiazolidine-2,4-diones and their inhibitory activities against MurD from Escherichia coli.
View Article and Find Full Text PDFThe Mur ligases have an essential role in the intracellular biosynthesis of bacterial peptidoglycan, and they represent attractive targets for the design of novel antibacterials. A series of compounds with an N-acylhydrazone scaffold were synthesized and screened for inhibition of the MurC and MurD enzymes from Escherichia coli. Compounds with micromolar inhibitory activities against both MurC and MurD were identified, and some of them also showed antibacterial activity.
View Article and Find Full Text PDFThe biosynthesis of bacterial cell wall peptidoglycan is a complex process that involves enzyme reactions that take place in the cytoplasm (synthesis of the nucleotide precursors) and on the inner side (synthesis of lipid-linked intermediates) and outer side (polymerization reactions) of the cytoplasmic membrane. This review deals with the cytoplasmic steps of peptidoglycan biosynthesis, which can be divided into four sets of reactions that lead to the syntheses of (1) UDP-N-acetylglucosamine from fructose 6-phosphate, (2) UDP-N-acetylmuramic acid from UDP-N-acetylglucosamine, (3) UDP-N-acetylmuramyl-pentapeptide from UDP-N-acetylmuramic acid and (4) D-glutamic acid and dipeptide D-alanyl-D-alanine. Recent data concerning the different enzymes involved are presented.
View Article and Find Full Text PDFA series of novel N-benzylidenesulfonohydrazide compounds were designed and synthesized as inhibitors of UDP-N-acetylmuramic acid: L-alanine ligase (MurC) and UDP-N-acetylmuramoyl-L-alanine: D-glutamate ligase (MurD) from E. coli, involved in the biosynthesis of bacterial cell-walls. Some compounds possessed inhibitory activity against both enzymes with IC(50) values as low as 30 microM.
View Article and Find Full Text PDFBioorg Med Chem Lett
April 2007
D-Alanine-D-alanine ligase (Ddl) catalyzes the biosynthesis of an essential bacterial peptidoglycan precursor D-alanyl-D-alanine and it represents an important target for development of new antibacterial drugs. A series of semicarbazides, aminocarbonyldiazenecarboxylates, diazenedicarboxamides, and hydrazinedicarboxamides was synthesized and screened for inhibition of DdlB from Escherichia coli. Compounds with good inhibitory activity were identified, enabling us to deduce initial structure-activity relationships.
View Article and Find Full Text PDFFour new sulfonates were prepared as potential inhibitors of antigen 85C, a mycolyl transferase involved in the biosynthesis of the mycobacterial cell wall being designed on the basis of the proposed catalytic mechanism and antigen 85C crystal structure. The inhibitors contained a sulfonate moiety, 3-phenoxybenzyl alcohol or N-(hydroxyethyl)phthalimide as trehalose mimetics, and an alkyl chain of different length mimicking either the mycolate (alpha-chain or the mycolic acid (beta-branch. One compound displayed promising activity in a mycolyltransferase inhibition assay (compound 2b, IC50 = 4.
View Article and Find Full Text PDF