Incorporation of radioactive precursors of amino acids and/or modifier groups into proteins, isolation and sizing of polypeptide species of interest, and finally their detection and characterization provide a robust handle to examine the life cycle and varied modifications of any protein. A prerequisite in application of these techniques to lysosomal enzymes is the availability of an avid and specific antibody, because lysosomal proteins represent a very minor fraction of the cellular protein and must be purified without a significant loss many 1000-fold as conveniently as possible. Pulse-chase labeling and good knowledge on organelle-specific modifications of lysosomal proteins may enhance the information that can be obtained from such experiments.
View Article and Find Full Text PDFGrowing evidence suggests the presence of active lysosomal enzymes in extra-lysosomal compartments, such as the plasma membrane. Although in the past little attention was paid to glycohydrolases acting on cellular compartments different from lysosomes, there is now increasing interest on plasma membrane-associated glycohydrolases because they should be involved, together with glycosyltransferases, in glycosphingolipids oligosaccharide modification processes regulating cell-to-cell and/or cell-environment interactions in both physiological and pathological conditions. Starting from the previous evidence of the presence of β-hexosaminidase and β-galactosidase at the plasma membrane of cultured fibroblasts, we here investigated the association of these glycohydrolases with lipid microdomains of Jurkat T-lymphocytes.
View Article and Find Full Text PDFDIRC2 (Disrupted in renal carcinoma 2) has been initially identified as a breakpoint-spanning gene in a chromosomal translocation putatively associated with the development of renal cancer. The DIRC2 protein belongs to the MFS (major facilitator superfamily) and has been previously detected by organellar proteomics as a tentative constituent of lysosomal membranes. In the present study, lysosomal residence of overexpressed as well as endogenous DIRC2 was shown by several approaches.
View Article and Find Full Text PDFMycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, manifests discreet strategies to subvert host immune responses, which enable the pathogen to survive and multiply inside the macrophages. This problem is further worsened by the emergence of multidrug resistant mycobacterial strains, which make most of the anti-tuberculous drugs ineffective. It is thus imperative to search for and design better therapeutic strategies, including employment of new antibiotics.
View Article and Find Full Text PDFLysosomes are organelles of eukaryotic cells that are critically involved in the degradation of macromolecules mainly delivered by endocytosis and autophagocytosis. Degradation is achieved by more than 60 hydrolases sequestered by a single phospholipid bilayer. The lysosomal membrane facilitates interaction and fusion with other compartments and harbours transport proteins catalysing the export of catabolites, thereby allowing their recycling.
View Article and Find Full Text PDFTransmembrane protein 192 (TMEM192) has been previously identified in proteomic analyses of lysosomal membranes. TMEM192 does not exhibit any significant homology to known protein families and possesses four potential transmembrane segments. To approach the molecular role of TMEM192, a detailed biochemical characterisation of this protein was performed.
View Article and Find Full Text PDFUntil recently, a modest number of approx. 40 lysosomal membrane proteins had been identified and even fewer were characterized in their function. In a proteomic study, using lysosomal membranes from human placenta we identified several candidate lysosomal membrane proteins and proved the lysosomal localization of two of them.
View Article and Find Full Text PDFNon-pathogenic mycobacteria such us Mycobacterium smegmatis reside in macrophages within phagosomes that fuse with late endocytic/lysosomal compartments. This sequential fusion process is required for the killing of non-pathogenic mycobacteria by macrophages. Porins are proteins that allow the influx of hydrophilic molecules across the mycobacterial outer membrane.
View Article and Find Full Text PDFArylsulfatase A (ASA) catalyzes the intralysosomal desulfation of 3-O-sulfogalactosylceramide (sulfatide) to galactosylceramide. The reaction requires saposin B (Sap B), a non-enzymatic proteinaceous cofactor which presents sulfatide to the catalytic site of ASA. The lack of either ASA or Sap B results in a block of sulfatide degradation, progressive intralysosomal accumulation of sulfatide, and the fatal lysosomal storage disease metachromatic leukodystrophy.
View Article and Find Full Text PDFHex (beta-hexosaminidase) is a soluble glycohydrolase involved in glycoconjugate degradation in lysosomes, however its localization has also been described in the cytosol and PM (plasma membrane). We previously demonstrated that Hex associated with human fibroblast PM as the mature form, which is functionally active towards G(M2) ganglioside. In the present study, Hex was analysed in a lysosomal membrane-enriched fraction obtained by purification from highly purified human placenta lysosomes.
View Article and Find Full Text PDFThe delivery of protein fragments to major histocompatibility complex (MHC)-loading compartments of professional antigen-presenting cells is essential in the adaptive immune response against pathogens. Apart from the crucial role of the transporter associated with antigen processing (TAP) for peptide loading of MHC class I molecules in the endoplasmic reticulum, TAP-independent translocation pathways have been proposed but not identified so far. Based on its overlapping substrate specificity with TAP, we herein investigated the ABC transporter ABCB9, also named TAP-like (TAPL).
View Article and Find Full Text PDFWe searched for novel proteins in lysosomal membranes, tentatively participating in molecular transport across the membrane and/or in interactions with other compartments. In membranes purified from placental lysosomes, we identified 58 proteins, known to reside at least partially in the lysosomal membrane. These included 17 polypeptides comprising or associated with the vacuolar adenosine triphosphatase.
View Article and Find Full Text PDFMutations in the neutrophil elastase (NE) gene have been postulated to interfere with normal intracellular trafficking of NE as an AP3-interacting membrane integrated protein and to cause severe congenital or cyclic neutropenia in humans. Here, we show that in U937 promonocytes NE is synthesized as a predominantly soluble proenzyme and is completely secreted in the presence of phorbol esters similarly to serglycin. Using chemical cross-linking NE is shown to be associated with serglycin as 34 kDa proenzyme in the trans-Golgi region of these cells indicating that it is delivered to lysosomes associated with serglycin.
View Article and Find Full Text PDFIn several reports cathepsin D has been implicated in apoptosis. In some systems the effects of agents considered to be mediated by cathepsin D were inhibited in the presence of pepstatin A, an inhibitor of the enzyme. In other studies the effect of a mutant cathepsin D deprived of activity was indistinguishable from that of the normal enzyme.
View Article and Find Full Text PDFTo clarify the sorting mechanism of the lysosomal/granular proteoglycan serglycin, we treated human promonocytic U937 cells with p-nitrophenyl-beta-D-xyloside (PNP-xyl) and cycloheximide. In the absence of protein synthesis, the carbohydrate moiety of serglycin was synthesized as PNP-xyl-chondroitin sulfate (CS), and most of it was delivered to lysosomes and degraded. Further, an augmented lysosomal targeting of serglycin in the presence of tunicamycin suggested that a sorting/lectin receptor with multiple specificity was involved with an increased capacity for serglycin in the absence of N-glycosylation.
View Article and Find Full Text PDFA structural hallmark of lysosomes is heterogeneity of their contents. We describe a method for isolation of particulate materials from human placental lysosomes. After a methionine methyl ester-induced disruption of lysosomes and two density gradient centrifugations we obtained a homogeneous membrane fraction and another one enriched in particulate inclusions.
View Article and Find Full Text PDFCathepsin D (CTSD), a protease detectable in different cell types whose primary function is to degrade proteins by bulk proteolysis in lysosomes, has been suggested to be involved in Alzheimer's disease (AD). In fact, there is increasing evidence that disturbance of the normal balance and localization of cathepsins may contribute to neurodegeneration in AD [Nakanishi H. Neuronal and microglial cathepsins in aging and age-related diseases.
View Article and Find Full Text PDFA synthetic concept is presented that allows the construction of peptide isostere libraries through polymer-supported C-acylation reactions. A phosphorane linker reagent is used as a carbanion equivalent; by employing MSNT as a coupling reagent, the C-acylation can be conducted without racemization. Diastereoselective reduction was effected with L-selectride.
View Article and Find Full Text PDFMicrobiology (Reading)
November 2005
The role of topoisomerase IV (Topo IV) and of the structural maintenance of chromosomes (SMC) complex in chromosome compaction and in global protein synthesis was investigated. Lowering of the levels of Topo IV led to chromosome decondensation, while overproduction induced chromosome hyper-compaction, showing that Topo IV has an influence on the compaction of the whole chromosome, in a manner similar to that of the SMC protein, though different in mechanism. Increased synthesis of Topo IV in smc-deleted cells partially rescued the growth and condensation defect of the deletion, but not the segregation defect, revealing that the two systems interact at a genetic level.
View Article and Find Full Text PDFWe used a vaccinia virus expression system for the production of recombinant human cathepsin D (CD), a lysosomal protease implicated in various patho-physiological processes including cancer, neurodegeneration, and development. The recombinant protein was successfully expressed in various human and non-human cells. It was correctly synthesized as a glycosylated 53 kDa precursor (proCDrec) that reacted with a polyclonal antibody against residues 7-21 of the propeptide sequence.
View Article and Find Full Text PDFMature beta-hexosaminidase A has been found associated to the external leaflet of plasma membrane of cultured fibroblasts. The plasma membrane association of beta-hexosaminidase A has been directly determined by cell surface biotinylation followed by affinity chromatography purification of the biotinylated proteins, and by immunocytochemistry. The immunological and biochemical characterization of biotinylated beta-hexosaminidase A revealed that the plasma membrane associated enzyme is fully processed, suggesting its lysosomal origin.
View Article and Find Full Text PDFBefore delivery to endosomes, portions of proCD (procathepsin D) and proSAP (prosaposin) are assembled into complexes. We demonstrate that such complexes are also present in secretions of cultured cells. To study the formation and properties of the complexes, we purified proCD and proSAP from culture media of Spodoptera frugiperda cells that were infected with baculoviruses bearing the respective cDNAs.
View Article and Find Full Text PDFMyeloperoxidase (MPO) is a cationic protein and one of the major constituents of azurophilic granules in neutrophils. Here, we examined whether intracellular transport of MPO and serglycin, a chondroitin sulfate (CS)-bearing proteoglycan, is correlated. First, we examined binding of MPO to CS-Sepharose and measured an ionic interaction, which was disrupted by 200-400 mM NaCl.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2002
We examined the association of acetyl-CoA:alpha-glucosaminide N-acetyltransferase, a lysosomal enzyme participating in the degradation of heparan sulfate with other components of the lysosomal membrane. We prepared lysosomal membranes from human placenta and treated them with zwitterionic and non-ionic detergents. Membrane proteins were solubilized either in the presence of CHAPS at room temperature or of Triton X-100 at 4 degrees C.
View Article and Find Full Text PDF