Publications by authors named "Andrej Fabrizius"

Coastal marine and estuarine systems are subject to enormous endogenous and exogenous pressures, particularly climate change, while at the same time being highly productive sources and nurseries for fish populations. Interactions between host and microbiome are increasingly recognized for their importance for fish health, with growing evidence indicating that increasing environmental pressures impact host resilience and favor the raise of opportunistic bacterial taxa. The microbial composition of the gill mucus reflects environmental conditions and represents an entry route for pathogens into the fish body.

View Article and Find Full Text PDF

Coastal and estuarine environments are under endogenic and exogenic pressures jeopardizing survival and diversity of inhabiting biota. Information of possible synergistic effects of multiple (a)biotic stressors and holobiont interaction are largely missing in estuaries like the Elbe but are of importance to estimate unforeseen effects on animals' physiology. Here, we seek to leverage host-transcriptional RNA-seq and gill mucus microbial 16S rRNA metabarcoding data coupled with physiological and abiotic measurements in a network analysis approach to decipher the impact of multiple stressors on the health of juvenile Sander lucioperca along one of the largest European estuaries.

View Article and Find Full Text PDF

Cytoglobin (Cygb) is an evolutionary ancient heme protein with yet unclear physiological function(s). Mammalian Cygb is ubiquitously expressed in all tissues and is proposed to be involved in reactive oxygen species (ROS) detoxification, nitric oxide (NO) metabolism and lipid-based signaling processes. Loss-of-function studies in mouse associate Cygb with apoptosis, inflammation, fibrosis, cardiovascular dysfunction or oncogenesis.

View Article and Find Full Text PDF

The members of the globin superfamily are a classical model system to investigate gene evolution and their fates as well as the diversity of protein function. One of the best-known globins is myoglobin (Mb), which is mainly expressed in heart muscle and transports oxygen from the sarcolemma to the mitochondria. Most vertebrates harbor a single copy of the myoglobin gene, but some fish species have multiple myoglobin genes.

View Article and Find Full Text PDF

Lungfishes belong to lobe-fined fish (Sarcopterygii) that, in the Devonian period, 'conquered' the land and ultimately gave rise to all land vertebrates, including humans. Here we determine the chromosome-quality genome of the Australian lungfish (Neoceratodus forsteri), which is known to have the largest genome of any animal. The vast size of this genome, which is about 14× larger than that of humans, is attributable mostly to huge intergenic regions and introns with high repeat content (around 90%), the components of which resemble those of tetrapods (comprising mainly long interspersed nuclear elements) more than they do those of ray-finned fish.

View Article and Find Full Text PDF

While the brain of most mammals suffers from irreversible damage after only short periods of low oxygen levels (hypoxia), marine mammals are excellent breath-hold divers that have adapted to hypoxia. In addition to physiological adaptations, such as large oxygen storing capacity and strict oxygen economy during diving, the neurons of the deep-diving hooded seal (Cystophora cristata) have an intrinsic tolerance to hypoxia. We aim to understand the molecular basis of this neuronal hypoxia tolerance.

View Article and Find Full Text PDF

The brain of diving mammals is repeatedly exposed to low oxygen conditions (hypoxia) that would have caused severe damage to most terrestrial mammals. Some whales may dive for >2 h with their brain remaining active. Many of the physiological adaptations of whales to diving have been investigated, but little is known about the molecular mechanisms that enable their brain to survive sometimes prolonged periods of hypoxia.

View Article and Find Full Text PDF

It is known that the West African lungfish (Protopterus annectens) harbours multiple myoglobin (Mb) genes that are differentially expressed in various tissues and that the Mbs differ in their abilities to confer tolerance towards hypoxia. Here, we show that other lungfish species (Protopterus dolloi, Protopterus aethiopicus and Lepidosiren paradoxa) display a similar diversity of Mb genes and have orthologous Mb genes. To investigate the functional diversification of these genes, we studied the structures, O binding properties and nitrite reductase enzymatic activities of recombinantly expressed P.

View Article and Find Full Text PDF

Neuroglobin (Ngb) is a member of the globin family of respiratory proteins, which was recently observed in many neurons of the auditory pathways. Up to now, however, nothing was known about the role of Ngb in hearing processes. We therefore studied auditory function by recording distortion-product otoacoustic emissions (DPOAE) and auditory brainstem responses (ABRs) in wild-type (C57BL/6N) and Ngb-knockout mice.

View Article and Find Full Text PDF

Animals living at high or temperate latitudes are challenged by extensive changes in environmental conditions over seasons. Djungarian hamsters () are able to cope with extremely cold ambient temperatures and food scarcity in winter by expressing spontaneous daily torpor. Daily torpor is a circadian controlled voluntary reduction of metabolism that can reduce energy expenditure by up to 65% when used frequently.

View Article and Find Full Text PDF

The brain of diving mammals tolerates low oxygen conditions better than the brain of most terrestrial mammals. Previously, it has been demonstrated that the neurons in brain slices of the hooded seal (Cystophora cristata) withstand hypoxia longer than those of mouse, and also tolerate reduced glucose supply and high lactate concentrations. This tolerance appears to be accompanied by a shift in the oxidative energy metabolism to the astrocytes in the seal while in terrestrial mammals the aerobic energy production mainly takes place in neurons.

View Article and Find Full Text PDF

Neuroglobin (Ngb) is a respiratory protein that is almost exclusively expressed in the vertebrate nervous system. Despite many years of research, the exact function and even the expression sites of Ngb are still a matter of debate. However, to investigate hypotheses surrounding the potential roles of Ngb, a detailed knowledge of its major and minor expression sites is indispensable.

View Article and Find Full Text PDF

Background: During long dives, the brain of whales and seals experiences a reduced supply of oxygen (hypoxia). The brain neurons of the hooded seal (Cystophora cristata) are more tolerant towards low-oxygen conditions than those of mice, and also better survive other hypoxia-related stress conditions like a reduction in glucose supply and high concentrations of lactate. Little is known about the molecular mechanisms that support the hypoxia tolerance of the diving brain.

View Article and Find Full Text PDF

The brains of some diving mammals can withstand periods of severe hypoxia without signs of deleterious effects. This may in part be due to an enhanced cerebral capacity for anaerobic energy production. Here, we have tested this hypothesis by comparing various parameters of the lactate dehydrogenase (LDH) in the brain of the hooded seal (Cystophora cristata) with those in the brains of the ferret (Mustela putorius furo) and mouse (Mus musculus).

View Article and Find Full Text PDF

Hemocyanin transports oxygen in the hemolymph of many arthropod species. Within the crustaceans, this copper-containing protein was thought to be restricted to Malacostraca, while other crustacean classes were assumed to employ hemoglobin or lack any respiratory protein. Only recently it has become evident that hemocyanins also occur in Remipedia and Ostracoda.

View Article and Find Full Text PDF

Hypoxia has gained ecological importance during the last decades, and it is the most dramatically increasing environmental factor in coastal areas and estuaries. The gills of fish are the prime target of hypoxia and other stresses. Here we have studied the impact of the exposure to hypoxia (1.

View Article and Find Full Text PDF

Comparative genomic studies have led to the recent identification of several novel globin types in the Metazoa. They have revealed a surprising evolutionary diversity of functions beyond the familiar O(2) supply roles of hemoglobin and myoglobin. Here we report the discovery of a hitherto unrecognized family of proteins with a unique modular architecture, possessing an N-terminal calpain-like domain, an internal, circular permuted globin domain, and an IQ calmodulin-binding motif.

View Article and Find Full Text PDF