The significance of biomedical applications of Ti alloys is best emphasized by their widespread utilization as implantable materials, such as internal supports and bone replacements. Ti alloys are sensitive to fretting wear, which leads to the early failure of Ti implants. Improved wear resistance of such implants is essential to ensure a prolonged implant life.
View Article and Find Full Text PDFThe significance of biomedical applications of bio-functional niobium (Nb)-based metallic biomaterials is underscored by their potential utilization in implant application. Nb-based metallic materials present reliable physicomechanical and biological properties, thus represent materials highly suitable for implant application. This review provides an overview on the advances of pure niobium and Nb-based metallic materials as implant materials over the past 20 years, and highlights the advantages of Nb-based metallic biomaterials for implant application in terms of their physicomechanical properties, corrosion resistance in biological media, magnetic resonance imaging (MRI) compatibility, cell compatibility, blood compatibility, osteogenesis, and bioactivity.
View Article and Find Full Text PDFContact infection by bacteria and viruses is a serious concern to human health. The increasing occurrence of public health problems has stimulated the urgent need for the development of antibacterial materials. Al alloys are the fastest-growing mass-produced material group, a prerequisite for the lightweight design of vehicles, food containers and storage, as well as civil-engineering structures.
View Article and Find Full Text PDFOwing to its superior mechanical and biological properties, titanium metal is widely used in dental implants, orthopedic devices, and bone regenerative materials. Advances in 3D printing technology have led to more and more metal-based scaffolds being used in orthopedic applications. Microcomputed tomography (μCT) is commonly applied to evaluate the newly formed bone tissues and scaffold integration in animal studies.
View Article and Find Full Text PDFThis paper investigated the influence of deep cryogenic treatments (DCT) on the tensile strength, elongation to fracture and conductivity of a deformation-processed Cu-Ni-Co-Si alloy. The tensile properties were measured using a mechanical testing machine. The conductivity was evaluated using a low-resistance tester.
View Article and Find Full Text PDFPelvic organ prolapse is the herniation of surrounding tissue and organs into the vagina and/or rectum and is a result of the weakening of pelvic floor muscles, connective tissue, and fascia. It is widely accepted that 50% of women will develop prolapse, with the prevalence increasing with age, and up to 10-20% of those seek evaluation for their condition. Suture repairs of pelvic floor defects are associated with a high failure rate, and permanent meshes were introduced to reduce the recurrence rate.
View Article and Find Full Text PDFThe influence of Si, Cu, B, and trace alloying elements on the conductivity of aluminum die cast 12 (ADC12) alloy was investigated. The conductivity decreased linearly with increasing volume fraction of the Si phase attributed to a linear decrease of the volume of the more conductive Al phase through a rule of mixtures. The conductivity also decreased with increasing Cu content, between 0~3%.
View Article and Find Full Text PDFThis research produced a porous Fe-8 wt.% Cu alloy by microwave sintering in order to achieve (i) an increased biodegradation rate, and (ii) an antibacterial function. The Fe-8Cu alloy had higher density, hardness and degradation rate (about 2 times higher) but smaller and fewer surface pores, compared to the pure Fe.
View Article and Find Full Text PDFThis work investigated the tensile characteristics of plain C-Mn steel with an ultrafine grained ferrite/cementite (UGF/C) microstructure and coarse-grained ferrite/pearlite (CGF/P) microstructure. The tensile tests were performed at temperatures between 77 K and 323 K. The lower yield and the ultimate tensile strengths were significantly increased when the microstructure was changed from the CGF/P to the UGF/C microstructures, but the total elongation and the uniform elongation decreased.
View Article and Find Full Text PDFIn the present study, an antibacterial biomedical magnesium (Mg) alloy with a low biodegradation rate was designed, and ZK30-0.2Cu-xMn (x = 0, 0.4, 0.
View Article and Find Full Text PDFThe tensile strength evolution and strengthening mechanism of Cu-Fe in-situ composites were investigated using both experiments and theoretical analysis. Experimentally, the tensile strength evolution of the in-situ composites with a cold deformation strain was studied using the model alloys Cu-11Fe, Cu-14Fe, and Cu-17Fe, and the effect of the strain on the matrix of the in-situ composites was studied using the model alloys Cu-3Fe and Cu-4.3Fe.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
September 2019
A prototype magnesium (Mg) surgical tack is tested comparatively against commercially available tacks made of titanium (ProTack, Medtronic) and PLGA (AbsorbaTack, Medtronic). The pull-out force is measured in situ in a lap-shear pull-out test, using porcine abdominal muscle tissue as a model. The Mg tack had a pull-out force comparable to those of the commercially available tacks.
View Article and Find Full Text PDFThe effect of B addition on the microstructure and mechanical properties of AM50 was investigated, and the mechanism of grain refinement was clarified. Optical microscopy, X-ray diffraction, scanning electron microscopy, and electron probe microanalysis were used to characterize the microstructure evolution. The grain size of as-cast AM50 decreased from 550 μm to 100 μm with the B content increasing from 0 to 0.
View Article and Find Full Text PDFTitanium (Ti) based tissue engineering scaffolds can be used to repair damaged bone. However, successful orthopedic applications of these scaffolds rely on their ability to mimic the mechanical properties of trabecular bone. Selective laser melting (SLM) was used to manufacture scaffolds of a new β-Ti35Zr28Nb alloy for biomedical applications.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
January 2019
A graphene coating, prepared via spin coating on the Mg alloy AZ31, was characterized using Raman spectroscopy, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The Raman spectra indicated that the graphene spin coatings were uniform over the surface of AZ31. The SEM indicated the chemical composition of the graphene coating.
View Article and Find Full Text PDFIn this work, anodized magnesium alloy AZ31 with and without boiling water sealing was pre-prepared, and then MgAl-layered double hydroxide (LDH) films were fabricated on it through hydrothermal chemical conversion of the pre-prepared anodic layer. The morphology, structure, and composition of the films were characterized by XRD, SEM, EDS, FT-IR, XPS and GDOES. It was found that the porosity of the films was reduced after fabrication of the LDHs.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
July 2018
This paper studied the influence of two common sterilization techniques, ethylene oxide (EO) and gamma irradiation (GI), on the corrosion rate of four Mg-based materials in CO -bicarbonate buffered Hanks' solution. The four materials were: high-purity (HP)-Mg, ZE41, ultra-high purity (XHP)-Mg, and XHP-ZX00. The corrosion rate was measured through mass loss (P ) and hydrogen evolution (P ).
View Article and Find Full Text PDF