The macroscale connectome is the network of physical, white-matter tracts between brain areas. The connections are generally weighted and their values interpreted as measures of communication efficacy. In most applications, weights are either assigned based on imaging features-e.
View Article and Find Full Text PDFThis study presents a workflow for identifying and characterizing patients with Heart Failure (HF) and multimorbidity utilizing data from Electronic Health Records. Multimorbidity, the co-occurrence of two or more chronic conditions, poses a significant challenge on healthcare systems. Nonetheless, understanding of patients with multimorbidity, including the most common disease interactions, risk factors, and treatment responses, remains limited, particularly for complex and heterogeneous conditions like HF.
View Article and Find Full Text PDFIn the healthcare sector, resorting to big data and advanced analytics is a great advantage when dealing with complex groups of patients in terms of comorbidities, representing a significant step towards personalized targeting. In this work, we focus on understanding key features and clinical pathways of patients with multimorbidity suffering from Dementia. This disease can result from many heterogeneous factors, potentially becoming more prevalent as the population ages.
View Article and Find Full Text PDFEpidemic control often requires optimal distribution of available vaccines and prophylactic tools, to protect from infection those susceptible. Well-established theory recommends prioritizing those at the highest risk of exposure. But the risk is hard to estimate, especially for diseases involving stigma and marginalization.
View Article and Find Full Text PDFFunctional connectivity (FC) describes the statistical dependence between neuronal populations or brain regions in resting-state fMRI studies and is commonly estimated as the Pearson correlation of time courses. Clustering or community detection reveals densely coupled sets of regions constituting resting-state networks or functional systems. These systems manifest most clearly when FC is sampled over longer epochs but appear to fluctuate on shorter timescales.
View Article and Find Full Text PDFThe understanding of bacterial population genetics and evolution is crucial in epidemic outbreak studies and pathogen surveillance. However, all epidemiological studies are limited to their sampling capacities which, by being usually biased or limited due to economic constraints, can hamper the real knowledge of the bacterial population structure of a given species. To this end, mathematical models and large-scale simulations can provide a quantitative analytical framework that can be used to assess how or if limited sampling can infer the true population structure.
View Article and Find Full Text PDFTrees, including minimum spanning trees (MSTs), are commonly used in phylogenetic studies. But, for the research community, it may be unclear that the presented tree is just a hypothesis, chosen from among many possible alternatives. In this scenario, it is important to quantify our confidence in both the trees and the branches/edges included in such trees.
View Article and Find Full Text PDF