Publications by authors named "Andreia S Gaspar"

Purpose: To develop an open-source prototype of myocardial T1 mapping (Open-MOLLI) to improve accessibility to cardiac T1 mapping and evaluate its repeatability. With Open-MOLLI, we aim to enable faster implementation and testing of sequence modifications and to facilitate inter-scanner and cross-vendor reproducibility studies.

Methods: Open-MOLLI is an inversion-recovery sequence using a balanced SSFP (bSSFP) readout, with inversion and triggering schemes based on the 5(3)3 MOLLI sequence, developed in Pulseq.

View Article and Find Full Text PDF

Purpose: Enabling fast and accessible myocardial T mapping is crucial for extending its clinical application. We introduce Open-MOLLI-SMS combining simultaneous multi-slice (SMS) with auto-calibration and variable-rate selective excitation (VERSE)-multiband pulses to obtain all slices in a fast single-shot T mapping sequence.

Methods: Open-MOLLI-SMS was developed by integrating SMS with the open-source method Open-MOLLI previously implemented in Pulseq.

View Article and Find Full Text PDF

Cardiac magnetic resonance imaging (MRI) is increasingly used in clinical practice due to its versatility. T1 mapping of the myocardium, a recently introduced MRI technique that is becoming available enables quantitative tissue characterization, overcoming some of the limitations of late enhancement. This promising technique has the ability to identify diffuse myocardial fibrosis and is beginning to be used in the diagnostic and prognostic assessment of several heart diseases.

View Article and Find Full Text PDF

Raw data, simulated and acquired phantom images, and quantitative longitudinal and transverse relaxation times (T/T) maps from two open-source Magnetic Resonance Imaging (MRI) pulse sequences are presented in this dataset along with corresponding ".seq" files, sequence implementation scripts, and reconstruction/analysis scripts [1]. Real MRI data were collected from a 3T Siemens Prisma Fit and a 1.

View Article and Find Full Text PDF

Open-source pulse sequence programs offer an accessible and transparent approach to sequence development and deployment. However, a common framework for testing, documenting, and sharing open-source sequences is still needed to ensure sequence usability and repeatability. We propose and demonstrate such a framework by implementing two sequences, Inversion Recovery Spin Echo (IRSE) and Turbo Spin Echo (TSE), with PyPulseq, and testing them on a commercial 3 T scanner.

View Article and Find Full Text PDF

Purpose: To simultaneously estimate the field (along with the T ) in the brain with multispin-echo (MSE) sequences and dictionary matching.

Methods: T mapping provides clinically relevant information such as in the assessment of brain degenerative diseases. It is commonly obtained with MSE sequences, and accuracy can be further improved by matching the MSE signal to a precomputed dictionary of echo-modulation curves.

View Article and Find Full Text PDF

Object: To develop a novel approach for highly accelerated Magnetic Resonance Fingerprinting (MRF) acquisition.

Materials And Methods: The proposed method combines parallel imaging, soft-gating and key-hole approaches to highly accelerate MRF acquisition. Slowly varying flip angles (FA), commonly used during MRF acquisition, lead to a smooth change in the signal contrast of consecutive time-point images.

View Article and Find Full Text PDF

Purpose: Echo planar imaging (EPI) is the primary sequence for functional and diffusion MRI. In fetal applications, the large field of view needed to encode the maternal abdomen leads to prolonged EPI readouts, which may be further extended due to safety considerations that limit gradient performance. The resulting images become very sensitive to water-fat shift and susceptibility artefacts.

View Article and Find Full Text PDF

Purpose: Fetal functional MRI studies using conventional 2-dimensional single-shot echo-planar imaging sequences may require discarding a large data fraction as a result of fetal and maternal motion. Increasing the temporal resolution using echo volumar imaging (EVI) could provide an effective alternative strategy. Echo volumar imaging was combined with inner volume (IV) imaging (IVEVI) to locally excite the fetal brain and acquire full 3-dimensional images, fast enough to freeze most fetal head motion.

View Article and Find Full Text PDF

Optimal contrast to noise ratio of the BOLD signal in neonatal and foetal fMRI has been hard to achieve because of the much longer T2(⁎) values in developing brain tissue in comparison to those in the mature adult brain. The conventional approach of optimizing fMRI sequences would suggest matching the echo time (TE) and the T2(⁎) of the neonatal and foetal brain. However, the use of a long echo time would typically increase the minimum repetition time (TR) resulting in inefficient sampling.

View Article and Find Full Text PDF