Inflammatory Bowel Disease (IBD) is a chronic inflammatory condition affecting the gastrointestinal tract (GIT). Glucagon-like peptide-2 (GLP-2) analogs possess high potential in the treatment of IBD by enhancing intestinal repair and attenuating inflammation. Due to the enzymatic degradation and poor intestinal absorption, GLP-2 analogs are administered parenterally, which leads to poor patient compliance.
View Article and Find Full Text PDFInflammatory bowel disease (IBD) encompasses a set of chronic inflammatory conditions, namely Crohn's disease and ulcerative colitis. Despite all advances in the management of IBD, a definitive cure is not available, largely due to a lack of a holistic understanding of its etiology and pathophysiology. Several in vitro, in vivo, and ex vivo models have been developed over the past few decades in order to abbreviate remaining gaps.
View Article and Find Full Text PDFDrug development is an ever-growing field, increasingly requesting reliable in vitro tools to speed up early screening phases, reducing the need for animal experiments. In oral delivery, understanding the absorption pattern of a new drug in the small intestine is paramount. Classical two-dimensional (2D) in vitro models are generally too simplistic and do not accurately represent native tissues.
View Article and Find Full Text PDFIn vitro cell-based models have been used for a long time since they are normally easily obtained and have an advantageous cost-benefit. Besides, they can serve a variety of ends, from studying drug absorption and metabolism to disease modeling. However, some in vitro models are too simplistic, not accurately representing the living tissues.
View Article and Find Full Text PDFDrug development is a critical step in the development pipeline of pharmaceutical industry, commonly performed in traditional cell culture and animal models. Though, those models hold critical gapsin the prediction and the translation of human pharmacokinetic (PK) and pharmacodynamics (PD) parameters. The advances in tissue engineering have allowed the combination of cell biology with microengineering techniques, offering alternatives to conventional preclinical models.
View Article and Find Full Text PDFThree-dimensional cell culture models, such as spheroids, can be used in the process of the development of new anticancer agents because they are able to closely mimic the main features of human solid tumors, namely their structural organization, cellular layered assembling, hypoxia, and nutrient gradients. These properties imprint to the spheroids an anticancer therapeutics resistance profile, which is similar to that displayed by human solid tumors. In this review, an overview of the drug resistance mechanisms observed in 3D tumor spheroids is provided.
View Article and Find Full Text PDFIn vitro 3D cancer spheroids generally exhibit a drug resistance profile similar to that found in solid tumors. Due to this property, these models are an appealing for anticancer compounds screening. Nevertheless, the techniques and methods aimed for drug discovery are mostly standardized for cells cultured in 2D.
View Article and Find Full Text PDFThe assessment of drug-combinations for pancreatic cancer treatment is usually performed in 2D cell cultures. In this study, the therapeutic effect and the synergistic potential of a particular drug-combination towards 2D and 3D cell cultures of pancreatic cancer were compared for the first time. Thus, the effect of Doxorubicin:Resveratrol (DOX:RES) combinations (at molar ratios ranging from 5:1 to 1:5) in the viability of PANC-1 cells cultured as 2D monolayers and as 3D spheroids was analyzed.
View Article and Find Full Text PDF