Oxidation-reduction post-translational modifications (redox-PTMs) are chemical alterations to amino acids of proteins. Redox-PTMs participate in the regulation of protein conformation, localization and function, acting as signalling effectors that impact many essential biochemical processes in the cells. Crucially, the dysregulation of redox-PTMs of proteins has been implicated in the pathophysiology of numerous human diseases, including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.
View Article and Find Full Text PDFSpinocerebellar ataxia type 3 (SCA3) is an adult-onset neurodegenerative disease caused by a polyglutamine expansion in the ataxin-3 (ATXN3) gene. No effective treatment is available for this disorder, other than symptom-directed approaches. Bile acids have shown therapeutic efficacy in neurodegenerative disease models.
View Article and Find Full Text PDFThe mechanisms underlying neurodegeneration in Parkinson's disease (PD) are still not fully understood. Glycosylation is an important post-translational modification that affects protein function, cell-cell contacts and inflammation and can be modified in pathologic conditions. Although the involvement of aberrant glycosylation has been proposed for PD, the knowledge of the diversity of glycans and their role in PD is still minimal.
View Article and Find Full Text PDFCholesterol 24-hydroxylase (CYP46A1) is an exclusively neuronal cytochrome P450 enzyme responsible for converting cholesterol into 24S-hydroxycholesterol, which serves as the primary pathway for eliminating cholesterol in the brain. We and others have shown that increased activity of CYP46A1 leads to reduced levels of cholesterol and has a positive effect on cognition. Therefore, we hypothesized that CYP46A1 could be a potential therapeutic target in Niemann-Pick type C (NPC) disease, a rare and fatal neurodegenerative disorder, characterized by cholesterol accumulation in endolysosomal compartments.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
February 2024
Disruption of brain cholesterol homeostasis has been implicated in neurodegeneration. Nevertheless, the role of cholesterol in Parkinson's Disease (PD) remains unclear. We have used N2a mouse neuroblastoma cells and primary cultures of mouse neurons and 1-methyl-4-phenylpyridinium (MPP), a known mitochondrial complex I inhibitor and the toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), known to trigger a cascade of events associated with PD neuropathological features.
View Article and Find Full Text PDFInt J Mol Sci
June 2023
Spinocerebellar ataxia type 3 (SCA3) is a rare neurodegenerative disease caused by an abnormal polyglutamine expansion within the ataxin-3 protein (ATXN3). This leads to neurodegeneration of specific brain and spinal cord regions, resulting in a progressive loss of motor function. Despite neuronal death, non-neuronal cells, including astrocytes, are also involved in SCA3 pathogenesis.
View Article and Find Full Text PDFSpinocerebellar ataxia type 3 (SCA3) is an adult-onset, progressive ataxia. SCA3 presents with ataxia before any gross neuropathology. A feature of many cerebellar ataxias is aberrant cerebellar output that contributes to motor dysfunction.
View Article and Find Full Text PDFProteasome inhibitors have shown relevant clinical activity in several hematological malignancies, namely in multiple myeloma and mantle cell lymphoma, improving patient outcomes such as survival and quality of life, when compared with other therapies. However, initial response to the therapy is a challenge as most patients show an innate resistance to proteasome inhibitors, and those that respond to the therapy usually develop late relapses suggesting the development of acquired resistance. The mechanisms of resistance to proteasome inhibition are still controversial and scarce in the literature.
View Article and Find Full Text PDFMicroglia have been increasingly implicated in neurodegenerative diseases (NDs), and specific disease associated microglia (DAM) profiles have been defined for several of these NDs. Yet, the microglial profile in Machado-Joseph disease (MJD) remains unexplored. Here, we characterized the profile of microglia in the CMVMJD135 mouse model of MJD.
View Article and Find Full Text PDFThe low regeneration potential of the central nervous system (CNS) represents a challenge for the development of new therapeutic strategies for neurodegenerative diseases, including spinocerebellar ataxias. Spinocerebellar ataxia type 3 (SCA3)-or Machado-Joseph disease (MJD)-is the most common dominant ataxia, being mainly characterized by motor deficits; however, SCA3/MJD has a complex and heterogeneous pathophysiology, involving many CNS brain regions, contributing to the lack of effective therapies. Mesenchymal stem cells (MSCs) have been proposed as a potential therapeutic tool for CNS disorders.
View Article and Find Full Text PDFMol Cell Neurosci
July 2021
Spinal cord injury (SCI) leads to dramatic impairments of motor, sensory, and autonomic functions of affected individuals. Following the primary injury, there is an increased release of glutamate that leads to excitotoxicity and further neuronal death. Therefore, modulating glutamate excitotoxicity seems to be a promising target to promote neuroprotection during the acute phase of the injury.
View Article and Find Full Text PDFExpert Opin Ther Targets
November 2020
Introduction: Six of the most frequent dominantly inherited spinocerebellar ataxias (SCAs) worldwide - SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17 - are caused by an expansion of a polyglutamine (polyQ) tract in the corresponding proteins. While the identification of the causative mutation has advanced knowledge on the pathogenesis of polyQ SCAs, effective therapeutics able to mitigate the severe clinical manifestation of these highly incapacitating disorders are not yet available.
Areas Covered: This review provides a comprehensive and critical perspective on well-established and emerging therapeutic targets for polyQ SCAs; it aims to inspire prospective drug discovery efforts.
Parkinson's disease (PD) is a progressive neurological disorder, mainly characterized by the progressive loss of dopaminergic neurons in the Substantia nigra pars compacta (SNpc) and by the presence of intracellular inclusions, known as Lewy bodies. Despite SNpc being considered the primary affected region in PD, the neuropathological features are confined solely to the nigro-striatal axis. With disease progression other brain regions are also affected, namely the cerebral cortex, although the spreading of the neurologic damage to this region is still not completely unraveled.
View Article and Find Full Text PDFImbalance of neuronal proteostasis associated with misfolding and aggregation of Tau protein is a common neurodegenerative feature in Alzheimer's disease (AD) and other Tauopathies. Consistent with suggestions that lifetime stress may be an important AD precipitating factor, we previously reported that environmental stress and high glucocorticoid (GC) levels induce accumulation of aggregated Tau; however, the molecular mechanisms for such process remain unclear. Herein, we monitor a novel interplay between RNA-binding proteins (RBPs) and autophagic machinery in the underlying mechanisms through which chronic stress and high GC levels impact on Tau proteostasis precipitating Tau aggregation.
View Article and Find Full Text PDFParkinson's disease (PD) is characterized by severe motor symptoms, and currently there is no treatment that retards disease progression or reverses damage prior to the time of clinical diagnosis. Tauroursodeoxycholic acid (TUDCA) is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD; however, its effect in PD motor symptoms has never been addressed. In the present work, an extensive behavior analysis was performed to better characterize the MPTP model of PD and to evaluate the effects of TUDCA in the prevention/improvement of mice phenotype.
View Article and Find Full Text PDFBackground And Objective: Mitochondrial dysfunction has been implicated in several neurodegenerative diseases. Creatine administration increases concentration of the energy buffer phosphocreatine, exerting protective effects in the brain. We evaluate whether a creatine-enriched diet would be beneficial for a mouse model of spinocerebellar ataxia type 3, a genetically defined neurodegenerative disease for which no treatment is available.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
September 2017
Impaired mitochondrial function and generation of reactive oxygen species are deeply implicated in Parkinson's disease progression. Indeed, mutations in genes that affect mitochondrial function account for most of the familial cases of the disease, and post mortem studies in sporadic PD patients brains revealed increased signs of oxidative stress. Moreover, exposure to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a mitochondrial complex I inhibitor, leads to clinical symptoms similar to sporadic PD.
View Article and Find Full Text PDFParkinson's disease (PD) is a progressive neurological disorder, mainly characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta. Although the cause of PD remains elusive, mitochondrial dysfunction and severe oxidative stress are strongly implicated in the cell death that characterizes the disease. Under oxidative stress, the master regulator of cellular redox status, nuclear factor erythroid 2 related factor 2 (Nrf2), is responsible for activating the transcription of several cytoprotective enzymes, namely glutathione peroxidase (GPx) and heme oxygenase-1 (HO-1).
View Article and Find Full Text PDFOxidative stress is a key pathological feature of Parkinson's disease (PD). Glutathione S-transferase pi (GSTP) is a neuroprotective antioxidant enzyme regulated at the transcriptional level by the antioxidant master regulator nuclear factor-erythroid 2-related factor 2 (Nrf2). Here, we show for the first time that upon MPTP-induced oxidative stress, GSTP potentiates S-glutathionylation of Kelch-like ECH-associated protein 1 (Keap1), an endogenous repressor of Nrf2, in vivo.
View Article and Find Full Text PDFOxidative stress is a pathological feature common to a multitude of neurological diseases. The production of reactive oxygen species (ROS) is the main mechanism underlying this cellular redox imbalance. Antioxidants protect biological targets against ROS, therefore, they have been considered as attractive potential therapeutic agents to counteract ROS-mediated neuronal damage.
View Article and Find Full Text PDFMachado-Joseph disease (MJD) is an inherited neurodegenerative disease, caused by a CAG repeat expansion within the coding region of ATXN3 gene, and which currently lacks effective treatment. In this work we tested the therapeutic efficacy of chronic treatment with valproic acid (VPA) (200mg/kg), a compound with known neuroprotection activity, and previously shown to be effective in cell, fly and nematode models of MJD. We show that chronic VPA treatment in the CMVMJD135 mouse model had limited effects in the motor deficits of these mice, seen mostly at late stages in the motor swimming, beam walk, rotarod and spontaneous locomotor activity tests, and did not modify the ATXN3 inclusion load and astrogliosis in affected brain regions.
View Article and Find Full Text PDFPolyglutamine diseases are a class of dominantly inherited neurodegenerative disorders for which there is no effective treatment. Here we provide evidence that activation of serotonergic signalling is beneficial in animal models of Machado-Joseph disease. We identified citalopram, a selective serotonin reuptake inhibitor, in a small molecule screen of FDA-approved drugs that rescued neuronal dysfunction and reduced aggregation using a Caenorhabditis elegans model of mutant ataxin 3-induced neurotoxicity.
View Article and Find Full Text PDF