The importance of the EGF receptor (EGFR) signaling pathway in the development and progression of nonsmall cell lung carcinomas (NSCLC) is widely recognized. Gene sequencing studies revealed that a majority of tumors responding to EGFR kinase inhibitors harbor activating mutations in the EGFR kinase domain. This underscores the need for novel biomarkers and diagnostic imaging approaches to identify patients who may benefit from particular therapeutic agents and approaches with improved efficacy and safety profiles.
View Article and Find Full Text PDFThe standard treatment for most advanced cancers is multidrug therapy. Unfortunately, combinations in the clinic often do not perform as predicted. Therefore, to complement identifying rational drug combinations based on biological assumptions, we hypothesized that a functional screen of drug combinations, without limits on combination sizes, will aid the identification of effective drug cocktails.
View Article and Find Full Text PDFIntroduction: [(18)F]-Labeled analogues of thymidine have demonstrated efficacy for PET imaging of cellular proliferation. We have synthesized two [(18)F]-labeled N(3)-substituted thymidine analogues, N(3)-[(18)F]fluoroethyl thymidine (N(3)-[(18)F]-FET) and N(3)-[(18)F]fluoropropyl thymidine (N(3)-[(18)F]-FPrT), and performed preliminary PET imaging studies in tumor-bearing mice.
Methods: Thymidine was converted to its 3',5'-O-bis-tetrahydropyranyl ether, which was then converted to the N(3)-ethyl and propyl-substituted mesylate precursors.
Aberrant expression and/or activity of members of the Src family of nonreceptor protein tyrosine kinases (SFK) are commonly observed in progressive stages of human tumors. In prostate cancer, two SFKs (Src and Lyn) have been specifically implicated in tumor growth and progression. However, there are no data in preclinical models demonstrating potential efficacy of Src inhibitors against prostate cancer growth and/or metastasis.
View Article and Find Full Text PDFPurpose: Clevudine (L: -FMAU) an un-natural analogue of thymidine, is in clinical trials for the treatment of hepatitis B virus (HBV). L: -FMAU is phosphorylated by cellular kinases such as thymidine kinase 1 and deoxycytidine kinase, and its triphosphate form inhibits HBV deoxyribonucleic acid synthesis. Thus, L: -FMAU, radiolabeled with an appropriate isotope, may be useful for positron emission tomography (PET) imaging of tumor proliferation.
View Article and Find Full Text PDF