The widespread adoption of cloud computing necessitates privacy-preserving techniques that allow information to be processed without disclosure. This paper proposes a method to increase the accuracy and performance of privacy-preserving Convolutional Neural Networks with Homomorphic Encryption (CNN-HE) by Self-Learning Activation Functions (SLAF). SLAFs are polynomials with trainable coefficients updated during training, together with synaptic weights, for each polynomial independently to learn task-specific and CNN-specific features.
View Article and Find Full Text PDFA smart city has a complex hierarchical communication system with various components. It must meet the requirements of fast connection, reliability, and security without data compromise. Internet of Things technology is widely used to provide connectivity and control solutions for smart sensors and other devices using heterogeneous networking technologies.
View Article and Find Full Text PDFContainers have emerged as a more portable and efficient solution than virtual machines for cloud infrastructure providing both a flexible way to build and deploy applications. The quality of service, security, performance, energy consumption, among others, are essential aspects of their deployment, management, and orchestration. Inappropriate resource allocation can lead to resource contention, entailing reduced performance, poor energy efficiency, and other potentially damaging effects.
View Article and Find Full Text PDFJ Comput Aided Mol Des
February 2018
In virtual drug screening, the chemical diversity of hits is an important factor, along with their predicted activity. Moreover, interim results are of interest for directing the further research, and their diversity is also desirable. In this paper, we consider a problem of obtaining a diverse set of virtual screening hits in a short time.
View Article and Find Full Text PDF