Publications by authors named "Andrei Sherstyuk"

Here we describe a vision of VR games that combine the best features of gaming and VR: large, persistent worlds experienced in photorealistic settings with full immersion. For example, Figure 1 illustrates a hypothetical immersive VR game that could be developed using current technologies, including real-time, cinematic-quality graphics; a panoramic head-mounted display (HMD); and wide-area tracking. We also examine the gap between available VR and gaming technologies, and offer solutions for bridging it.

View Article and Find Full Text PDF

Objectives: Virtual reality (VR) environments offer potential advantages over traditional paper methods, manikin simulation, and live drills for mass casualty training and assessment. The authors measured the acquisition of triage skills by novice learners after exposing them to three sequential scenarios (A, B, and C) of five simulated patients each in a fully immersed three-dimensional VR environment. The hypothesis was that learners would improve in speed, accuracy, and self-efficacy.

View Article and Find Full Text PDF

While sonification has enjoyed much attention in VR simulation studies, music has generally been incorporated as ambiance. This is partially due to difficulties with manipulating it interactively in real-time while maintaining a sensible musicality. This paper discusses how algorithmically generated music is used to provide ambiance, characterize the visual representation of molecular particle flow, provide orientation cues to the user, and enhance recognition of chemical gradient balances in a reified model of the kidney nephron.

View Article and Find Full Text PDF

Access to the laboratory component of a class is limited by resources, while lab training is not currently possible for distance learning. To overcome the problem a solution is proposed to enable hands-on, interactive, objectively scored and appropriately mentored learning in a widely accessible environment. The proposed solution is the Virtual-Reality Motor-Skills trainer to teach basic fine-motor skills using Haptics for touch and feel interaction as well as a 3D virtual reality environment for visualization.

View Article and Find Full Text PDF

Several abstract concepts in medical education are difficult to teach and comprehend. In order to address this challenge, we have been applying the approach of reification of abstract concepts using interactive virtual environments and a knowledge-based design. Reification is the process of making abstract concepts and events, beyond the realm of direct human experience, concrete and accessible to teachers and learners.

View Article and Find Full Text PDF

Virtual environments can provide training that is difficult to achieve under normal circumstances. Medical students can work on high-risk cases in a realistic, time-critical environment, where students practice skills in a cognitively demanding and emotionally compelling situation. Research from cognitive science has shown that as students acquire domain expertise, their semantic organization of core domain concepts become more similar to those of an expert's.

View Article and Find Full Text PDF

Virtual Reality has been used for clinical application for about 10 years and has proved to be an effective tool for treating various disorders. In this paper, we want to share our experience in building a 3D, motion tracked, immersive VR system for pain treatment and biofeedback research.

View Article and Find Full Text PDF

Project TOUCH (Telehealth Outreach for Unified Community Health) is a collaborative effort between University of New Mexico and University of Hawaii. The purpose of the project is to demonstrate the feasibility of using advanced technologies to overcome geographical barriers to delivery of medical education and to enhance the learning process within a group setting. This has led to the design and implementation of a new system that addresses the critical requirements for collaborative virtual environments: consistency, networking, scalability, and system integration.

View Article and Find Full Text PDF

Medical knowledge and skills essential for tomorrow's healthcare professionals continue to change faster than ever before creating new demands in medical education. Project TOUCH (Telehealth Outreach for Unified Community Health) has been developing methods to enhance learning by coupling innovations in medical education with advanced technology in high performance computing and next generation Internet2 embedded in virtual reality environments (VRE), artificial intelligence and experiential active learning. Simulations have been used in education and training to allow learners to make mistakes safely in lieu of real-life situations, learn from those mistakes and ultimately improve performance by subsequent avoidance of those mistakes.

View Article and Find Full Text PDF