Publications by authors named "Andrei Rybin"

We employ an exact solution of the thermal bath Lindblad master equation with the Liouvillian superoperator that takes into account both dynamic and environment-induced intermode couplings to study the speed of evolution and quantum speed limit (QSL) times of a open multi-mode bosonic system. The time-dependent QSL times are defined from quantum speed limits, giving upper bounds on the rate of change of two different measures of distinguishability: the fidelity of evolution and the Hilbert-Schmidt distance. For Gaussian states, we derive explicit expressions for the evolution speed and the QSL times.

View Article and Find Full Text PDF

In this paper, we consider the thermal bath Lindblad master equation to describe the quantum nonunitary dynamics of quantum states in a multi-mode bosonic system. For the two-mode bosonic system interacting with an environment, we analyse how both the coupling between the modes and the coupling with the environment characterised by the frequency and the relaxation rate vectors affect dynamics of the entanglement. We discuss how the revivals of entanglement can be induced by the dynamic coupling between the different modes.

View Article and Find Full Text PDF
Article Synopsis
  • Heavy metal ions, which don't biodegrade and can pollute natural resources, are highly toxic even in small amounts and pose health risks.
  • This research explores using colloidal luminescent semiconductor quantum dots (QDs) combined with superparamagnetic nanoparticles to create a sensitive optical sensor for detecting toxic heavy metal ions like Co, Ni, and Pb.
  • The study shows that the sensor can accurately detect these metals in water at very low concentrations (as low as ≈0.01 ppm) and highlights the advantage of using a magnetic field to easily extract the sensors from solutions for analysis.
View Article and Find Full Text PDF

Graphene-quantum dot nanocomposites attract significant attention for novel optoelectronic devices, such as ultrafast photodetectors and third-generation solar cells. Combining the remarkable optical properties of quantum dots (QDs) with the exceptional electrical properties of graphene derivatives opens a vast perspective for further growth in solar cell efficiency. Here, we applied (3-mercaptopropyl) trimethoxysilane functionalized reduced graphene oxide (f-rGO) to improve the QDs-based solar cell active layer.

View Article and Find Full Text PDF

The population of the Earth is moving towards urban areas forming smart cities (SCs). Waste management is a component of SCs. We consider a SC which contains a distribution of waste bins and a distribution of waste trucks located in the SC sectors.

View Article and Find Full Text PDF
Nonlinear theory of slow light.

Philos Trans A Math Phys Eng Sci

March 2011

In the framework of the nonlinear Λ model, propagation of solitons was analysed in atomic vapours and Bose-Einstein condensates. The complicated nonlinear interplay between fast and slow-light solitons in a Λ-type medium was shown to facilitate control of its optical transparency and formation of optical gates. An exact analytical description was given for the deceleration, stopping and revival of slow-light solitons in the experimentally relevant non-adiabatic regime.

View Article and Find Full Text PDF