Bayesian network modeling (BN modeling, or BNM) is an interpretable machine learning method for constructing probabilistic graphical models from the data. In recent years, it has been extensively applied to diverse types of biomedical data sets. Concurrently, our ability to perform long-time scale molecular dynamics (MD) simulations on proteins and other materials has increased exponentially.
View Article and Find Full Text PDFBayesian network modeling (BN modeling, or BNM) is an interpretable machine learning method for constructing probabilistic graphical models from the data. In recent years, it has been extensively applied to diverse types of biomedical datasets. Concurrently, our ability to perform long-timescale molecular dynamics (MD) simulations on proteins and other materials has increased exponentially.
View Article and Find Full Text PDFIn this report, we propose a novel mathematical model of the origin and evolution of sex determination in vertebrates that is based on the stochastic epigenetic modification (SEM) mechanism. We have previously shown that SEM, with rates consistent with experimental observation, can both increase the rate of gene fixation and decrease pseudogenization, thus dramatically improving the efficacy of evolution. Here, we present a conjectural model of the origin and evolution of sex determination wherein the SEM mechanism alone is sufficient to parsimoniously trigger and guide the evolution of heteromorphic sex chromosomes from the initial homomorphic chromosome configuration, without presupposing any allele frequency differences.
View Article and Find Full Text PDFCytokines operate in concert to maintain immune homeostasis and coordinate immune responses. In cases of ER breast cancer, peripheral immune cells exhibit altered responses to several cytokines, and these alterations are correlated strongly with patient outcomes. To develop a systems-level understanding of this dysregulation, we measured a panel of cytokine responses and receptor abundances in the peripheral blood of healthy controls and ER breast cancer patients across immune cell types.
View Article and Find Full Text PDFWhile there are currently over 40 replicated genes with mapped risk alleles for Late Onset Alzheimer's disease (LOAD), the Apolipoprotein E locus E4 haplotype is still the biggest driver of risk, with odds ratios for neuropathologically confirmed E44 carriers exceeding 30 (95% confidence interval 16.59-58.75).
View Article and Find Full Text PDFCooperative interactions in protein-protein interfaces demonstrate the interdependency or the linked network-like behavior and their effect on the coupling of proteins. Cooperative interactions also could cause ripple or allosteric effects at a distance in protein-protein interfaces. Although they are critically important in protein-protein interfaces, it is challenging to determine which amino acid pair interactions are cooperative.
View Article and Find Full Text PDFEnhancers are fundamental to gene regulation. Post-translational modifications by the small ubiquitin-like modifiers (SUMO) modify chromatin regulation enzymes, including histone acetylases and deacetylases. However, it remains unclear whether SUMOylation regulates enhancer marks, acetylation at the 27th lysine residue of the histone H3 protein (H3K27Ac).
View Article and Find Full Text PDFCancers (Basel)
December 2023
Next-generation cancer and oncology research needs to take full advantage of the multimodal structured, or graph, information, with the graph data types ranging from molecular structures to spatially resolved imaging and digital pathology, biological networks, and knowledge graphs. Graph Neural Networks (GNNs) efficiently combine the graph structure representations with the high predictive performance of deep learning, especially on large multimodal datasets. In this review article, we survey the landscape of recent (2020-present) GNN applications in the context of cancer and oncology research, and delineate six currently predominant research areas.
View Article and Find Full Text PDFCytokines mediate cell-to-cell communication across the immune system and therefore are critical to immunosurveillance in cancer and other diseases. Several cytokines show dysregulated abundance or signaling responses in breast cancer, associated with the disease and differences in survival and progression. Cytokines operate in a coordinated manner to affect immune surveillance and regulate one another, necessitating a systems approach for a complete picture of this dysregulation.
View Article and Find Full Text PDFCooperative interactions in protein-protein interfaces demonstrate the interdependency or the linked network-like behavior of interface interactions and their effect on the coupling of proteins. Cooperative interactions also could cause ripple or allosteric effects at a distance in protein-protein interfaces. Although they are critically important in protein-protein interfaces it is challenging to determine which amino acid pair interactions are cooperative.
View Article and Find Full Text PDFModern artificial neural networks (ANNs) have long been designed on foundations of mathematics as opposed to their original foundations of biomimicry. However, the structure and function of these modern ANNs are often analogous to real-life biological networks. We propose that the ubiquitous information-theoretic principles underlying the development of ANNs are similar to the principles guiding the macro-evolution of biological networks and that insights gained from one field can be applied to the other.
View Article and Find Full Text PDFThe goal of oncology is to provide the longest possible survival outcomes with the therapeutics that are currently available without sacrificing patients' quality of life. In lung cancer, several data points over a patient's diagnostic and treatment course are relevant to optimizing outcomes in the form of precision medicine, and artificial intelligence (AI) provides the opportunity to use available data from molecular information to radiomics, in combination with patient and tumor characteristics, to help clinicians provide individualized care. In doing so, AI can help create models to identify cancer early in diagnosis and deliver tailored therapy on the basis of available information, both at the time of diagnosis and in real time as they are undergoing treatment.
View Article and Find Full Text PDFBackground And Objective: Machine learning (ML) models are increasingly being utilized in oncology research for use in the clinic. However, while more complicated models may provide improvements in predictive or prognostic power, a hurdle to their adoption are limits of model interpretability, wherein the inner workings can be perceived as a "black box". Explainable artificial intelligence (XAI) frameworks including Local Interpretable Model-agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP) are novel, model-agnostic approaches that aim to provide insight into the inner workings of the "black box" by producing quantitative visualizations of how model predictions are calculated.
View Article and Find Full Text PDFIn a series of lectures given in 2003, soon after receiving the Fields Medal for his results in the Algebraic Geometry, Vladimir Voevodsky (1966-2017) identifies two strategic goals for mathematics, which he plans to pursue in his further research. The first goal is to develop a ''computerised library of mathematical knowledge,'' which supports an automated proof-verification. The second goal is to ''bridge pure and applied mathematics.
View Article and Find Full Text PDFCancer immunotherapy, specifically immune checkpoint blockade, has been found to be effective in the treatment of metastatic cancers. However, only a subset of patients achieve clinical responses. Elucidating pretreatment biomarkers predictive of sustained clinical response is a major research priority.
View Article and Find Full Text PDFRecent successes of immune-modulating therapies for cancer have stimulated research on information flow within the immune system and, in turn, clinical applications of concepts from information theory. Through information theory, one can describe and formalize, in a mathematically rigorous fashion, the function of interconnected components of the immune system in health and disease. Specifically, using concepts including entropy, mutual information, and channel capacity, one can quantify the storage, transmission, encoding, and flow of information within and between cellular components of the immune system on multiple temporal and spatial scales.
View Article and Find Full Text PDFIn this review, we aim to assess the current state of science in relation to the integration of patient-generated health data (PGHD) and patient-reported outcomes (PROs) into routine clinical care with a focus on surgical oncology populations. We will also describe the critical role of artificial intelligence and machine-learning methodology in the efficient translation of PGHD, PROs, and traditional outcome measures into meaningful patient care models.
View Article and Find Full Text PDFWe propose a novel two-stage analysis strategy to discover candidate genes associated with the particular cancer outcomes in large multimodal genomic cancers databases, such as The Cancer Genome Atlas (TCGA). During the first stage, we use mixed mutual information to perform variable selection; during the second stage, we use scalable Bayesian network (BN) modeling to identify candidate genes and their interactions. Two crucial features of the proposed approach are (i) the ability to handle mixed data types (continuous and discrete, genomic, epigenomic, etc.
View Article and Find Full Text PDFThe challenges in recapitulating in vivo human T cell development in laboratory models have posed a barrier to understanding human thymopoiesis. Here, we used single-cell RNA sequencing (sRNA-seq) to interrogate the rare CD34 progenitor and the more differentiated CD34 fractions in the human postnatal thymus. CD34 thymic progenitors were comprised of a spectrum of specification and commitment states characterized by multilineage priming followed by gradual T cell commitment.
View Article and Find Full Text PDFRecent developments in sequencing and growth of bioinformatics resources provide us with vast depositories of protein network and single nucleotide polymorphism data. It allows us to re-examine, on a larger and more comprehensive scale, the relationship between protein-protein interactions and protein variability and evolutionary rates. This relationship has remained far from unambiguously resolved for quite a long time, reflecting shifting analysis approaches in the literature, and growing data availability.
View Article and Find Full Text PDF