Publications by authors named "Andrei P Razjivin"

We perform theoretical studies of nonlinear spectral responses of molecular aggregates upon multiple electronic excitations. It is shown that the transient absorption (TA) spectra exhibit gradual shifting to short wavelengths upon an increase in excitation energy accompanied by population of higher-order exciton manifolds. This transformation of the TA profile reflects a character of the exciton splitting and, therefore, is strongly dependent on the aggregate shape and size as well as on the exciton couplings and disorder of the site energies.

View Article and Find Full Text PDF

The possibility of pigment detection and recognition in different environments such as solvents or proteins is a challenging, and at the same time demanding, task. It may be needed in very different situations: from the nondestructive in situ identification of pigments in paintings to the early detection of fungal infection in major agro-industrial crops and products. So, we propose a prototype method, the key feature of which is a procedure analyzing the lineshape of a spectrum.

View Article and Find Full Text PDF

In this paper, a procedure for obtaining undistorted high derivatives (up to the eighth order) of the optical absorption spectra of biomolecule pigments has been developed. To assess the effectiveness of the procedure, the theoretical spectra of bacteriochlorophyll , chlorophyll , spheroidene, and spheroidenone were simulated by fitting the experimental spectra using the differential evolution algorithm. The experimental spectra were also approximated using sets of Gaussians to calculate the model absorption spectra.

View Article and Find Full Text PDF

Considering bacteriochlorophyll molecules embedded in the protein matrix of the light-harvesting complexes of purple bacteria (known as LH2 and LH1-RC) as examples of systems of interacting pigment molecules, we investigated the relationship between the spatial arrangement of the pigments and their exciton transition moments. Based on the recently reported crystal structures of LH2 and LH1-RC and the outcomes of previous theoretical studies, as well as adopting the Frenkel exciton Hamiltonian for two-level molecules, we performed visualizations of the LH2 and LH1 exciton transition moments. To make the electron transition moments in the exciton representation invariant with respect to the position of the system in space, a system of pigments must be translated to the center of mass before starting the calculations.

View Article and Find Full Text PDF

Cyanobacterial photosystem I (PSI) constitutes monomeric and trimeric pigment-protein complexes whose optical properties are marked by the presence of long-wavelength absorption bands. In spite of numerous experimental studies, the nature of these bands is still under debate and requires intensive theoretical analysis. Collecting together the data of linear spectroscopy and single-molecule spectroscopy (SMS) of PSI from Arthrospira platensis, we performed quantum modeling of the optical response based on molecular exciton theory (ET) and the multimode Brownian oscillator model (MBOM).

View Article and Find Full Text PDF

We provide here an edited version of the "Farewell discussion" by the late Aleksandr (Alex) Yuryevich (Yu) Borisov (1930-2019) on several aspects related to the excitation energy transfer in photosynthetic bacteria. It is preceded by a prolog giving the events that led to our decision to publish it. Further, we include here a few photographs to give a personal glimpse of this unique biophysicist of our time.

View Article and Find Full Text PDF

EET between the two circular bacteriochlorophyll compartments B800 and B850 in native (containing the carotenoid rhodopin) and carotenoidless LH2 isolated from the photosynthetic purple sulfur bacterium Allochromatium minutissimum was investigated by femtosecond time-resolved transient absorption spectroscopy. Both samples were excited with 120-fs laser pulses at 800 nm, and spectral evolution was followed in the 720-955 nm range at different delay times. No dependence of transient absorption in the B800 band on the presence of the carotenoid rhodopin was found.

View Article and Find Full Text PDF