Redox-conducting polymers based on SalEn-type complexes have attracted considerable attention due to their potential applications in electrochemical devices. However, their charge transfer mechanisms, physical and electrochemical properties remain unclear, hindering their rational design and optimization. This study aims to establish the influence of monomer geometry on the polymer's properties by investigating the properties of novel nonplanar SalEn-type complexes, poly[N,N'-bis(salicylidene)propylene-2-(hydroxy)diaminonickel(II)], and its analog with 2,2,6,6-tetramethylpiperidinyl-N-oxyl (TEMPO)-substituted bridge (MTS).
View Article and Find Full Text PDFPolymers with embedded metal-organic frameworks (MOFs) have been of interest in research for advanced applications in gas separation, catalysis and sensing due to their high porosity and chemical selectivity. In this study, we utilize specific MOFs with high thermal stability and non-centrosymmetric crystal structures (zeolitic imidazolate framework, ZIF-8) in order to give an example of MOF-polymer composite applications in nonlinear optics. The synthesized MOF-based polymethyl methacrylate (PMMA) composite (ZIF-8-PMMA) demonstrates the possibility of the visualization of near-infrared laser beams in the research lab.
View Article and Find Full Text PDFWe demonstrate herein an all-optical switch based on stimuli-responsive and photochromic-free metal-organic framework (HKUST-1). Ultrafast near-infrared laser pulses stimulate a reversible 0.4 eV blue shift of the absorption band with up to 200 s rate due to dehydration and concomitant shrinking of the structure-forming [Cu C O ] cages of HKUST-1.
View Article and Find Full Text PDF