The use of nanoparticles (NPs) to modify the surface of cotton fabric is a promising approach to endowing the material with a set of desirable characteristics that can significantly expand the functionality, wear comfort, and service life of textile products. Herein, two approaches to modifying the surface of hexagonal boron nitride (-BN) NPs with a hollow core and a smooth surface by treatment with maleic anhydride (MA) and diethylene triamine (DETA) were studied. The DETA and MA absorption on the surface of -BN and the interaction of surface-modified -NPs with cellulose as the main component of cotton were modeled using density functional theory with the extended Perdew-Burke-Ernzerhof functional.
View Article and Find Full Text PDFMethylene blue (MB) is widely used as a test material in photodynamic therapy and photocatalysis. These applications require an accurate determination of the MB concentration as well as the factors affecting the temporal evolution of the MB concentration. Optical absorbance is the most common method used to estimate MB concentration.
View Article and Find Full Text PDFDue to its unique physical, chemical, and mechanical properties, such as a low specific density, large specific surface area, excellent thermal stability, oxidation resistance, low friction, good dispersion stability, enhanced adsorbing capacity, large interlayer shear force, and wide bandgap, hexagonal boron nitride (-BN) nanostructures are of great interest in many fields. These include, but are not limited to, (i) heterogeneous catalysts, (ii) promising nanocarriers for targeted drug delivery to tumor cells and nanoparticles containing therapeutic agents to fight bacterial and fungal infections, (iii) reinforcing phases in metal, ceramics, and polymer matrix composites, (iv) additives to liquid lubricants, (v) substrates for surface enhanced Raman spectroscopy, (vi) agents for boron neutron capture therapy, (vii) water purifiers, (viii) gas and biological sensors, and (ix) quantum dots, single photon emitters, and heterostructures for electronic, plasmonic, optical, optoelectronic, semiconductor, and magnetic devices. All of these areas are developing rapidly.
View Article and Find Full Text PDFA sensitive and reliable biomarker of zinc status has yet to be identified, but observational research suggests that the exchangeable zinc pool (EZP) size may be a possible biomarker. This randomized, placebo-controlled trial aimed to compare the change in EZP size from baseline to endline in 174 children who were preventatively supplemented with 10 mg of zinc as part of a multiple micronutrient power (MNP) or as a standalone dispersible tablet for 24 weeks versus a placebo powder. The effects of systemic inflammation on EZP size were also evaluated.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2021
Molybdenum sulfide is a very promising catalyst for the photodegradation of organic pollutants in water. Its photocatalytic activity arises from unsaturated sulfur bonds, and it increases with the introduction of structural defects and/or oxygen substitutions. Amorphous molybdenum sulfide (-MoSO) with oxygen substitutions has many active sites, which create favorable conditions for enhanced catalytic activity.
View Article and Find Full Text PDFIn recent years, bacteria inactivation during their direct physical contact with surface nanotopography has become one of the promising strategies for fighting infection. Contact-killing ability has been reported for several nanostructured surfaces, e.g.
View Article and Find Full Text PDFBN/Ag hybrid nanomaterials (HNMs) and their possible applications as novel active catalysts and antibacterial agents are investigated. BN/Ag nanoparticle (NP) hybrids were fabricated using two methods: (i) chemical vapour deposition (CVD) of BN NPs in the presence of Ag vapours, and (ii) ultraviolet (UV) decomposition of AgNO in a suspension of BN NPs. The hybrid microstructures were studied by high-resolution transmission electron microscopy (HRTEM), high-angular dark field scanning TEM imaging paired with energy dispersion X-ray (EDX) mapping, X-ray photoelectron spectroscopy (XPS), and infrared spectroscopy (FTIR).
View Article and Find Full Text PDFNanoparticles (NPs) have a great potential as nanosized drug-delivery carriers. Such systems must safely deliver the drug to the site of the tumor without drug leakage, effectively penetrate inside cancer cells, and provide intracellular drug release. Herein we developed an original and simple method aimed at the fabrication of spherical boron nitride NPs (BNNPs), 100-200 nm in diameter, with peculiar petal-like surfaces via chemical vapor deposition.
View Article and Find Full Text PDF