Publications by authors named "Andrei Maksimenko"

Intracellular distribution of doxorubicin (DOX) and its squalenoylated (SQ-DOX) nanoparticles (NPs) form in murine lung carcinoma M109 and human breast carcinoma MDA-MB-231 cells was investigated by Raman microspectroscopy. Pharmacological data showed that DOX induced higher cytotoxic effect than SQ-DOX NPs. Raman data were obtained using single-point measurements and imaging on the whole cell areas.

View Article and Find Full Text PDF

Oxidatively damaged DNA bases are substrates for two overlapping repair pathways: DNA glycosylase-initiated base excision repair (BER) and apurinic/apyrimidinic (AP) endonuclease-initiated nucleotide incision repair (NIR). In the BER pathway, an AP endonuclease cleaves DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases, whereas in the NIR pathway, the same AP endonuclease incises DNA 5' to an oxidized base. The majority of characterized AP endonucleases possess classic BER activities, and approximately a half of them can also have a NIR activity.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are coordination polymers of interest for biomedical applications. Of particular importance, nanoparticles made of iron(III) trimesate (MIL-100, MIL standing for Material Institut Lavoisier) (nanoMOFs) can be conveniently synthesised under mild and green conditions. They were shown to be biodegradable, biocompatible and efficient to encapsulate a variety of active molecules.

View Article and Find Full Text PDF

Neuropeptides are small neuronal signaling molecules that act as neuromodulators for a variety of neural functions including analgesia, reproduction, social behavior, learning, and memory. One of the endogenous neuropeptides-Met-Enkephalin (Met-Enk), has been shown to display an inhibitory effect on cell proliferation and differentiation. Here, a novel lipid-modification approach is shown to create a small library of neuropeptides that will allow increased bioavailability and plasma stability after systemic administration.

View Article and Find Full Text PDF

Gemcitabine is currently the most effective agent against advanced pancreatic cancer. However, the major therapeutic hurdles using gemcitabine include rapid inactivation by blood deaminases and fast development of cell chemoresistance, induced by down-regulation of deoxycytidine kinase or nucleoside transporters. To overcome the above drawbacks we designed recently a novel nanomedicine strategy based on squalenoyl prodrug of 5'-monophosphate gemcitabine (SQdFdC-MP).

View Article and Find Full Text PDF

Drug delivery of combined cytotoxic and antivascular chemotherapies in multidrug nanoassemblies may represent an attractive way to improve the treatment of experimental cancers. Here we made the proof of concept of this approach on the experimental LS174-T human colon carcinoma xenograft nude mice model. Briefly, we have nanoprecipitated the anticancer compound gemcitabine conjugated with squalene (SQ-gem) together with isocombretastatin A-4 (isoCA-4), a new isomer of the antivascular combretastatin A-4 (CA-4).

View Article and Find Full Text PDF

We identified that the chemical linkage of the anticancer drug doxorubicin onto squalene, a natural lipid precursor of the cholesterol's biosynthesis, led to the formation of squalenoyl doxorubicin (SQ-Dox) nanoassemblies of 130-nm mean diameter, with an original "loop-train" structure. This unique nanomedicine demonstrates: (i) high drug payload, (ii) decreased toxicity of the coupled anticancer compound, (iii) improved therapeutic response, (iv) use of biocompatible transporter material, and (v) ease of preparation, all criteria that are not combined in the currently available nanodrugs. Cell culture viability tests and apoptosis assays showed that SQ-Dox nanoassemblies displayed comparable antiproliferative and cytotoxic effects than the native doxorubicin because of the high activity of apoptotic mediators, such as caspase-3 and poly(ADP-ribose) polymerase.

View Article and Find Full Text PDF

Fluorescent and biotinylated squalene-gemcitabine prodrug nanoparticles exhibiting high drug payloads have been prepared and successfully used to target different cancer cell lines, resulting in increased cell uptake and improved anticancer efficiency, which represents the first targeted system derived from the squalenoylation approach.

View Article and Find Full Text PDF

A new paclitaxel (Ptx) prodrug was designed by coupling a single terpene unit (MIP) to the hydroxyl group in position 2' of the drug molecule. Using a squalene derivative of polyethylene glycol (SQ-PEG) as surface active agent, the resulting bioconjugate (PtxMIP) self-assembled in water leading to the formation of stable nanoparticles (PtxMIP_SQ-PEG NPs) with an impressively high drug loading (82%). In vivo, the anticancer activity of this novel Ptx nanoassembled prodrug was compared to the conventional Cremophor-containing formulation (Taxol) on a murine model of breast cancer lung metastasis induced by intravenous injection of 4T1 tumor cells, genetically modified to stably express firefly luciferase.

View Article and Find Full Text PDF

Background: RET/PTC1 is the most prevalent type of gene rearrangement found in papillary thyroid carcinoma (PTC). Previously, we introduced a new noncationic nanosystem for targeted RET/PTC1 silencing by efficient delivery of small interfering RNA (siRNA) using the "squalenoylation" approach. With the aim of improving these results further, we designed new squalenoyl nanostructures consisting of the fusogenic peptide GALA-cholesterol (GALA-Chol) and squalene (SQ) nanoparticles (NPs) of siRNA RET/PTC1.

View Article and Find Full Text PDF

The synthesis of a novel class of polymer prodrug nanoparticles with anticancer activity is reported by using squalene, a naturally occurring isoprenoid, as a building block by the reversible addition-fragmentation (RAFT) technique. The RAFT agent was functionalized by gemcitabine (Gem) as anticancer drug, and the polymerization of squalenyl-methacrylate (SqMA) led to well-defined macromolecular prodrugs comprising one Gem at the extremity of each polymer chain. The amphiphilic nature of the resulting Gem-PSqMA conjugates allowed them to self-assemble into long-term stable and narrowly dispersed nanoparticles with significant anticancer activity in vitro on various cancer cell lines.

View Article and Find Full Text PDF

A series of new lipid prodrugs of paclitaxel, which can be formulated as nanoassemblies, are described. These prodrugs which are designed to overcome the limitations due to the systemic toxicity and low water solubility of paclitaxel consist of a squalene chain bound to the 2'-OH of paclitaxel through a 1,4-cis,cis-dienic linker. This design allows the squalene-conjugates to self-assemble as nanoparticular systems while preserving an efficient release of the free drug, thanks to the dienic spacer.

View Article and Find Full Text PDF

A series of new polyisoprenoyl prodrugs of gemcitabine, which can be formulated as nanoassemblies are described. These prodrugs were designed to improve gemcitabine efficacy and to overcome the limitations due to the systemic toxicity of this anticancer compound. In vitro biological assessment showed that these polyisoprenoyl gemcitabine nanoassemblies displayed notable cytotoxicity on several cancer cell lines, including murine melanoma cell line B16F10, human pancreatic carcinoma cell line MiaPaCa-2, human lung carcinoma cell line A549 and human breast adenocarcinoma cell line MCF7.

View Article and Find Full Text PDF

A versatile and efficient functionalization strategy for polymeric nanoparticles (NPs) has been reported and successfully applied to PEGylated, biodegradable poly(alkyl cyanoacrylate) (PACA) nanocarriers. The relevance of this platform was demonstrated in both the fields of cancer and Alzheimer's disease (AD). Prepared by copper-catalyzed azide-alkyne cycloaddition (CuAAC) and subsequent self-assembly in aqueous solution of amphiphilic copolymers, the resulting functionalized polymeric NPs exhibited requisite characteristics for drug delivery purposes: (i) a biodegradable core made of poly(alkyl cyanoacrylate), (ii) a hydrophilic poly(ethylene glycol) (PEG) outer shell leading to colloidal stabilization, (iii) fluorescent properties provided by the covalent linkage of a rhodamine B-based dye to the polymer backbone, and (iv) surface functionalization with biologically active ligands that enabled specific targeting.

View Article and Find Full Text PDF

Oligonucleotides (ONs) such as antisense oligonucleotides (AS-ON) and siRNAs are used as experimental tools to study gene function and are currently being tested in clinical trials for use as therapeutic anticancer agents. However, their therapeutic use has been limited by their low physiological stability and their slow cellular uptake. The systemic delivery of sequence-specific AS-ON targeting the EWS/FLI1 gene product by a targeted, nonviral delivery system dramatically inhibits tumor growth in a murine model of Ewing's sarcoma.

View Article and Find Full Text PDF

To study cellular actin dynamics, a cell-free assay based on fluorescence anisotropy was developed. Using G-actin-Alexa as a probe, we found that anisotropy enhancement reflects F-actin elongation. Anisotropy enhancement varies with the concentration of magnesium and calcium cations and with ethylenediaminetetraacetate or well-known effectors of the polymerization.

View Article and Find Full Text PDF

The EWS-Fli1 fusion gene encodes for a chimeric oncogenic transcription factor considered to be the cause of the Ewing sarcoma. The efficiency of small interfering RNAs (siRNAs) targeted toward the EWS-Fli1 transcript (at the junction point type 1) was studied, free or encapsulated into recently developed polyisobutylcyanoacrylate aqueous core nanocapsules. Because this mRNA sequence is only present in cancer cells, it therefore constituted a relevant target.

View Article and Find Full Text PDF

The multifunctional DNA repair enzymes apurinic/apyrimidinic (AP) endonucleases cleave DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases in the base excision repair pathway. Alternatively, in the nucleotide incision repair (NIR) pathway, the same AP endonucleases incise DNA 5' of a number of oxidatively damaged bases. At present, the physiological relevance of latter function remains unclear.

View Article and Find Full Text PDF

The EWS/FLI-1 fusion gene, resulting from a t(11;22) translocation, plays a key role in the pathogenesis of Ewing sarcoma. Previously, we have shown that antisense oligonucleotides designed against EWS-Fli-1 inhibited tumor growth in nude mice provided they were delivered intratumorally by nanocapsules or by CTAB-coated nanospheres. In this study, we have used two types of nanospheres (designated as type 1 and type 2 nanospheres) stabilized with chitosan for both intratumoral and systemic administration of oligonucleotides.

View Article and Find Full Text PDF

The genetic hallmark of the Ewing sarcoma family of tumours (ESFT) is the presence of the t(11;22)(q24;q12) translocation, present in up to 85% of cases of ESFT, which creates the EWS/FLI1 fusion gene and results in the expression of a chimeric protein regulating many other genes. The inhibition of this protein by antisense strategies has shown its predominant role in the transformed phenotype of Ewing cells. In addition, the junction point at the mRNA level offers a target for short therapeutic nucleic acids that is present only in the cancer cells and not in the normal tissues of a patient.

View Article and Find Full Text PDF

The rapid development of the small interfering ribonucleic acid (siRNA)-induced inhibition of the gene expression at the RNA level offers to research groups a new strategy for the understanding of gene functions. The siRNA approach is close to antisense oligonucleotide technology and takes advantage of the progress of chemically synthesized oligoribonucleotides. This approach for the mammalian cells was described by Elbashir et al.

View Article and Find Full Text PDF

The base excision repair (BER) pathway plays a key role in protecting the genome from endogenous DNA damage. Current methods to measure BER activities are indirect and cumbersome. Here, we introduce a direct method to assay DNA excision repair that is suitable for automation and industrial use, based on the fluorescence quenching mechanism of molecular beacons.

View Article and Find Full Text PDF

Lipid peroxidation generates aldehydes, which react with DNA bases, forming genotoxic exocyclic etheno(epsilon)-adducts. E-bases have been implicated in vinyl chloride-induced carcinogenesis, and increased levels of these DNA lesions formed by endogenous processes are found in human degenerative disorders. E-adducts are repaired by the base excision repair pathway.

View Article and Find Full Text PDF

Purpose: Antisense oligonucleotides (AON) against junction EWS-Fli-1 oncogene (which is responsible for the Ewing Sarcoma) are particularly interesting for targeting chromosomal translocations that are only found in tumor cells. However, these AON have proved in the past to be ineffective in vivo because of their susceptibility to degradation and their poor intracellular penetration. The aim of this study was to improve the delivery of these molecules through the use of nanotechnologies.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionfgmp6u3ue3o2lvfink1bebtlviag7sgh): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once