Publications by authors named "Andrei L Kolesnikov"

Equilibrium and kinetic behavior of adsorption-induced deformation have attracted a lot of attention in the last few decades. The theoretical and experimental works cover activated carbons, coals, zeolites, glasses, etc. However, most of the theoretical works describe only the equilibrium part of the deformation process or focus on the time evolution of the adsorption process.

View Article and Find Full Text PDF

Nanoporous solids have high surface area, so processes at the surface affect the sample as a whole. When guest species adsorb in nanopores, be they molecules adsorbing from the gas phase, or ions adsorbing from solution, they cause material deformation. While often undesired, adsorption- or electrosorption-induced deformation provides a potential for nanoporous materials to be used as actuators.

View Article and Find Full Text PDF

Activated carbons are widely used industrial adsorbents due to their attractive sorption properties. Although extensive research on activated carbon has been carried out for several centuries, some aspects of the adsorption-induced deformation of activated carbon remain unclear. The puzzling temperature dependence of the methane-induced deformation of activated carbon is investigated in the present work.

View Article and Find Full Text PDF

The development of effective protection against exposure to chemical warfare agents (CWAs), such as sarin, relies on studies of its adsorption on the capturing materials and seeking candidates capable of adsorbing large amounts of sarin gas. Many metal-organic frameworks (MOFs) are promising materials for the effective capture and degradation of sarin and simulant substances. Among the simulants capable of mimicking thermodynamic properties of the agent, not all of them have been investigated on the ability to act similarly in the adsorption process, in particular, whether the agent and a simulant have similar mechanisms of binding to the MOF surface.

View Article and Find Full Text PDF

A model is developed for describing the transport of charged colloidal particles in an evaporating sessile droplet on the electrified metal substrate in the presence of a solvent flow. The model takes into account the electric charge of colloidal particles and small ions produced by electrolytic dissociation of the active groups on the colloidal particles and solvent molecules. We employ a system of self-consistent Poisson and Nernst-Planck equations for electric potential and average concentrations of colloidal particles and ions with the appropriate boundary conditions.

View Article and Find Full Text PDF

Correction for 'Electrochemistry meets polymer physics: polymerized ionic liquids on an electrified electrode' by Yury A. Budkov , , 2022, DOI: 10.1039/d1cp04221a.

View Article and Find Full Text PDF

Polymeric ionic liquids are emerging polyelectrolyte materials for modern electrochemical applications. In this paper, we propose a self-consistent field theory of a polymeric ionic liquid on a charged conductive electrode. Taking into account the conformational entropy of rather long polymerized cations within the Lifshitz theory and electrostatic and excluded volume interactions of ionic species within the mean-field approximation, we obtain a system of self-consistent field equations for the local electrostatic potential and average concentrations of monomeric units and counterions.

View Article and Find Full Text PDF

We develop a new quantitative molecular theory of liquid-phase dipolar polymer gels. We model monomer units of the polymer network as a couple of charged sites separated by a fluctuating distance. For the first time, within the random phase approximation, we have obtained an analytical expression for the electrostatic free energy of the dipolar gel.

View Article and Find Full Text PDF

Even three decades after signing the Chemical Weapons Convention, organophosphorus chemical warfare agents (CWAs), such as sarin, remain a threat. The development of novel methods for the detection of CWAs, protection from CWAs, and CWA decontamination motivates research on their physicochemical properties. Due to the extreme toxicity of sarin, most of the experimental studies are carried out using less toxic simulant compounds.

View Article and Find Full Text PDF

We present results of self-consistent field calculations of thermodynamic and structural properties of glycosaminoglycans (chondroitin sulfate, hyaluronic acid, and heparin) in aqueous solutions with added monovalent and divalent salts. A semiphenomenological coarse-grained model for semiflexible polyelectrolyte chains in solution is proposed. The coarse-grained model permits one to focus on the essential features of these systems and provides significant computational advantages with respect to more detailed models.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Andrei L Kolesnikov"

  • - Andrei L Kolesnikov's recent research primarily focuses on the adsorption-induced deformation of materials, particularly exploring the behavior of microporous carbons and nanoporous materials during adsorption and electrosorption processes.
  • - His studies reveal that the deformation caused by the adsorption of guest molecules can be exploited for potential applications in actuators, emphasizing the significance of surface interactions and material structure.
  • - Kolesnikov also investigates practical implications, such as improving capture methods for chemical warfare agents like sarin using metal-organic frameworks, thereby contributing to safety and decontamination measures.