Animal models of human neurological disorders provide valuable experimental tools which enable us to study various aspects of disorder pathogeneses, ranging from structural abnormalities and disrupted metabolism and signaling to motor and mental deficits, and allow us to test novel therapies in preclinical studies. To be valid, these animal models should recapitulate complex pathological features at the molecular, cellular, tissue, and behavioral levels as closely as possible to those observed in human subjects. Pathological states resembling known human neurological disorders can be induced in animal species by toxins, genetic factors, lesioning, or exposure to extreme conditions.
View Article and Find Full Text PDFOxidative stress, a state of disrupted redox signaling, reactive oxygen species (ROS) overproduction, and oxidative cell damage, accompanies numerous brain pathologies, including aging-related dementia and Alzheimer's disease, the most common neurodegenerative disorder of the elderly population. However, a causative role of neuronal oxidative stress in the development of aging-related cognitive decline and neurodegeneration remains elusive because of the lack of approaches for modeling isolated oxidative injury in the brain. Here, we present a chemogenetic approach based on the yeast flavoprotein d-amino acid oxidase (DAAO) for the generation of intraneuronal hydrogen peroxide (HO).
View Article and Find Full Text PDF