Neutrophil activation plays integral roles in host tissue damage and resistance to infectious diseases. As glucose uptake and NADPH availability are required for reactive oxygen metabolite production by neutrophils, we tested the hypothesis that pathological glucose levels (>or=12 mM) are sufficient to activate metabolism and reactive oxygen metabolite production in normal adherent neutrophils. We demonstrate that elevated glucose concentrations increase the neutrophil's metabolic oscillation frequency and hexose monophosphate shunt activity.
View Article and Find Full Text PDFPregnancy is a unique immunological state. Pregnancy neutrophils differ from those of non-pregnant women as they cannot be fully activated for oxidant production, but yet have higher levels of unstimulated oxidant production. Although reduced activation is due to decreased hexose monophosphate shunt activity, the mechanism enhancing basal oxidant levels is unknown.
View Article and Find Full Text PDFMacrophages and monocytes are activated by CpG DNA motifs to produce NO, which is enhanced dramatically by IFN-gamma. We hypothesize that synergistic cellular responses to IFN-gamma and CpG DNA are due to cross-talk between metabolic signaling pathways of leukocytes. Adherent RAW264.
View Article and Find Full Text PDFTrophoblasts are fetal epithelial cells that form an interface between mother and offspring. To evaluate their anti-inflammatory capacity, we tested the hypothesis that trophoblasts deactivate neutrophils using single-cell assays. Several biophysical (Ca2+ and NAD(P)H oscillation frequency) and physiological (oxidant production) markers of activated neutrophils revert to a nonactivated phenotype as activated cells make contact with trophoblasts.
View Article and Find Full Text PDFObjective: To evaluate the mechanism of oxidative stress at glucose levels accompanying diabetic pregnancy. Specifically, we hypothesize that elevated glucose overwhelms hexose monophosphate shunt (HMS) down-regulation observed during pregnancy.
Methods: Peripheral blood cells from normal healthy pregnant women were exposed to heightened glucose levels to provide an in vitro model of the effects of diabetic pregnancy.
Invest Ophthalmol Vis Sci
December 2005
Purpose: It was previously demonstrated that toll-like receptor 4 (TLR4) is involved in species-specific human retinal pigment epithelial (HRPE) photoreceptor outer segment recognition and oxidant production. This study was performed to demonstrate the classical role of TLR4 in HRPE endotoxin (lipopolysaccharide; LPS) binding leading to HRPE proinflammatory cytokine secretion.
Methods: Cultured HRPE cells were examined for TLR4 expression by immunofluorescence, Western blot analysis, and RT-PCR.
We have tested Galvanovskis and Sandblom's prediction that ion channel clustering enhances weak electric field detection by cells as well as how the elicited signals couple to metabolic alterations. Electric field application was timed to coincide with certain known intracellular chemical oscillators (phase-matched conditions). Polarized, but not spherical, neutrophils labeled with anti-K(v)1.
View Article and Find Full Text PDFThe agonist-stimulated metabolism of membrane lipids produces potent second messengers that regulate phagocytosis. We studied whether human ceramide kinase (hCERK) activity and ceramide 1-phosphate formation could lead to enhanced phagocytosis through a mechanism involving modulation of the membrane-structural order parameter. hCERK was stably transfected into COS-1 cells that were stably transfected with the FcgammaRIIA receptor.
View Article and Find Full Text PDFIn adherent and motile neutrophils NAD(P)H concentration, flavoprotein redox potential, and production of reactive oxygen species and nitric oxide, are all periodic and exhibit defined phase relationships to an underlying metabolic oscillation of approximately 20 s. Utilizing fluorescence microscopy, we have shown in real-time, on the single cell level, that the system is sensitive to externally applied periodically pulsed weak magnetic fields matched in frequency to the metabolic oscillation. Depending upon the phase relationship of the magnetic pulses to the metabolic oscillation, the magnetic pulses serve to either increase the amplitude of the NAD(P)H and flavoprotein oscillations, and the rate of production of reactive oxygen species and nitric oxide or, alternatively, collapse the metabolic oscillations and curtail production of reactive oxygen species and nitric oxide.
View Article and Find Full Text PDFReactive oxygen metabolites (ROMs) may contribute to several eye diseases, such as age-related macular degeneration, although the underlying mechanisms are unclear. The present study shows that human photoreceptor outer segments (POS) prime human retinal pigment epithelial (RPE) cells for massive ROM release in response to lipopolysaccharide (LPS) and interferon-gamma. However, no ROM priming of human RPE cells is observed for bovine POS.
View Article and Find Full Text PDFRetinal pigment epithelial (RPE) cells mediate the recognition and clearance of effete photoreceptor outer segments (POS), a process central to the maintenance of normal vision. Given the emerging importance of Toll-like receptors (TLRs) in transmembrane signaling in response to invading pathogens as well as endogenous substances, we hypothesized that TLRs are associated with RPE cell management of POS. TLR4 clusters on human RPE cells in response to human, but not bovine, POS.
View Article and Find Full Text PDFNeutrophils from pregnant women display reduced neutrophil-mediated effector functions, such as reactive oxygen metabolite (ROM) release. Because the NADPH oxidase and NO synthase produce ROMs and NO, the availability of their substrate NADPH is a potential regulatory factor. NADPH is produced by glucose-6-phosphate dehydrogenase (G-6-PDase) and 6-phosphogluconate dehydrogenase (6-PGDase), which are the first two steps of the hexose monophosphate shunt (HMS).
View Article and Find Full Text PDFAlthough much progress has been made in elucidating the biochemical properties of lipid rafts, there has been less success in identifying these structures within living cell membranes, which has led to some concern regarding their existence. One difficulty in analyzing lipid rafts using optical microscopy is their small size. We now test the existence of lipid rafts in polarized neutrophils, which redistribute lipid raft markers into comparatively large lamellipodia.
View Article and Find Full Text PDFIntracellular Ca(2+) signals have been associated with cell polarization and locomotion. As cell motility underlies metastasis, we have sought to better characterize the Ca(2+) signaling events in HT1080 fibrosarcoma cells. We have tested the hypothesis that low voltage-activated (LVA) and nonvoltage-gated (NVG) channels of HT1080 cells participate in dynamic Ca(2+)-signaling events leading to cell migration and invasion.
View Article and Find Full Text PDFPrevious studies have shown that the urokinase-type plasminogen activator receptor (uPAR) is localized to the adherence sites of leukocytes and tumor cells suggesting that pericellular proteolysis may accompany focal activation of adherence. To assess for focused pericellular proteolytic activity, we prepared two-dimensional substrates coated with FITC-casein or Bodipy FL-BSA. These molecules are poorly fluorescent, but become highly fluorescent after proteolytic degradation.
View Article and Find Full Text PDFSteady-state and time-resolved fluorescence spectroscopy and fluorescence microscopy of leukocyte flavoproteins have been performed. Both living human peripheral blood monocytes and neutrophils have been utilized as experimental models, as the former relies much more heavily on mitochondrial metabolism for energy production than the latter. We confirm previous studies indicating that cellular flavoproteins absorb at 460 nm and emit at 530 nm, very similar to that of the FAD moiety.
View Article and Find Full Text PDFIntracellular NAD(P)H oscillations exhibited by polarized neutrophils display congruent with 20 s periods, which are halved to congruent with 10 s upon stimulation with chemotactic peptides such as FNLPNTL (N-formyl-nle-leu-phe-nle-tyr-lys). By monitoring this frequency change, we have measured accurately the time interval between stimulus and metabolic frequency changes. A microscope flow chamber was designed to allow rapid delivery of FNLPNTL to adherent cells.
View Article and Find Full Text PDFAge-related macular degeneration (ARMD), proliferative vitreoretinopathy (PVR) and uveitis are characterized by RPE motility through the ECM of retinal lesions. The purpose of this study was to test the hypothesis that multiple proteolytic systems are functionally intact at the HRPE surface and peri-cellular region and that these activities are differentially modulated by IL-1beta. HRPE cells were evaluated: (1).
View Article and Find Full Text PDFCalcium oscillations and traveling calcium waves have been observed in living cells, although amino acid sequences regulating wave directionality and downstream cell functions have not been reported. In this study we identify an amino acid sequence within the cytoplasmic domain of the leukocyte IgG receptor Fc gamma RIIA that affects the amplitude of calcium spikes and the spatiotemporal dynamics of calcium waves in the vicinity of phagosomes. By using high-speed microscopy to map calcium-signaling routes within cells, we have discovered that bound IgG-coated targets trigger two calcium waves traveling in opposite directions about the perimeter of cells expressing Fc gamma RIIA.
View Article and Find Full Text PDFWe present a two-compartment model to explain the oscillatory behavior observed experimentally in activated neutrophils. Our model is based mainly on the peroxidase-oxidase reaction catalyzed by myeloperoxidase with melatonin as a cofactor and NADPH oxidase, a major protein in the phagosome membrane of the leukocyte. The model predicts that after activation of a neutrophil, an increase in the activity of the hexose monophosphate shunt and the delivery of myeloperoxidase into the phagosome results in oscillations in oxygen and NAD(P)H concentration.
View Article and Find Full Text PDFUsing high sensitivity fluorescence imaging with shutter speeds approximately 600,000 times faster than those of video frames, we have characterized Ca2+ waves within cells in exquisite detail to reveal Ca2+ signaling routes. Polarized neutrophils exhibited a counterclockwise rotating ryanodine-sensitive juxtamembrane Ca2+ wave during temporal calcium spikes. During stimulation with fMLP, a chemotactic factor, two Ca2+ waves traveling in opposite directions around the perimeter of the cell emanated from sites of stimulation (the clockwise wave is verapamil sensitive).
View Article and Find Full Text PDFPregnancy is associated with changes in host susceptibility to infections and inflammatory disease. We hypothesize that metabolic enzyme trafficking affects maternal neutrophil activation. Specifically, immunofluorescence microscopy has shown that glucose-6-phosphate dehydrogenase (G-6-PDase), the rate-controlling step of the hexose monophosphate shunt (HMS), is located near the cell periphery in control neutrophils but is found near the microtubule-organizing centers in cells from pregnant women.
View Article and Find Full Text PDFNeutrophils expend large amounts of energy to perform demanding cell functions. To better understand energy production and flow during cell activation, immunofluorescence microscopy was employed to determine the location of the key metabolic enzyme hexokinase during various conditions. Hexokinase is translocated from the neutrophil's cytosol to its periphery in response to N-formyl-methionyl-leucyl-phenylalanine (fMLP) and other activating stimuli, but not during exposure to the formyl peptide receptor antagonist N-tert-BOC-phe-leu-phe-leu-phe (Boc-PLPLP).
View Article and Find Full Text PDFAlthough much progress has been made in elucidating the mechanisms underlying the physiological regulation of fever, there is little understanding of the biological utility of fever's thermal component. Considering the evolutionary co-conservation of fever and innate immunity, we hypothesize that fever's thermal component might in general augment innate immune function and, in particular, neutrophil activation. Accordingly, we have evaluated the effect of febrile temperatures on neutrophil function at the single-cell level.
View Article and Find Full Text PDF