Novel C(3) propenylamide and propenylsulfonamide cephalosporins have been synthesized and tested for their ability to inhibit the penicillin-binding protein 2' (PBP2') from Staphylococcus epidermidis and the growth of a panel of clinically relevant bacterial species, including methicillin-resistant Staphylococcus aureus (MRSA). The most potent compounds inhibited the growth of MRSA strains with minimum inhibitory concentrations (MIC) as low as 1 microg/mL. The structure-activity relationship revealed the potential for further optimization of this new cephalosporin class.
View Article and Find Full Text PDFTwo structurally distinct series of SCD (Delta9 desaturase) inhibitors (1 and 2) have been previously reported by our group. In the present work, we merged the structural features of the two series. This led to the discovery of compound 5b (CVT-12,012) which is highly potent in a human cell-based (HEPG2) SCD assay (IC(50)=6nM).
View Article and Find Full Text PDFWe discovered a structurally novel SCD (Delta9 desaturase) inhibitor 4a (CVT-11,563) that has 119 nM potency in a human cell-based (HEPG2) SCD assay and selectivity against Delta5 and Delta6 desaturases. This compound has 90% oral bioavailability (rat) and excellent plasma exposure (dAUC 935 ng h/mL). Additionally, 4a shows moderately selective liver distribution (three times vs plasma and adipose tissue) and relatively low brain penetration.
View Article and Find Full Text PDFWe identified a series of structurally novel SCD (Delta9 desaturase) inhibitors via high-throughput screening and follow-up SAR studies. Modification of the central bicyclic scaffold has proven key to our potency optimization effort. The most potent analog (8g) had IC(50) value of 50 pM in a HEPG2 SCD assay and has been shown to be metabolically stable and selective against Delta5 and Delta6 desaturases.
View Article and Find Full Text PDF