The methylation of cytosines at CpG sites in DNA, carried out de novo by DNA methyltransferase Dnmt3a, is a basic epigenetic modification involved in gene regulation and genome stability. Aberrant CpG methylation in gene promoters leads to oncogenesis. In oncogene promoters, CpG sites often colocalize with guanine-rich sequences capable of folding into G-quadruplexes (G4s).
View Article and Find Full Text PDFIn mammals, de novo methylation of cytosines in DNA CpG sites is performed by DNA methyltransferase Dnmt3a. Changes in the methylation status of CpG islands are critical for gene regulation and for the progression of some cancers. Recently, the potential involvement of DNA G-quadruplexes (G4s) in methylation control has been found.
View Article and Find Full Text PDFIn mammals, DNA methylation is necessary for the maintenance of genomic stability, gene expression regulation, and other processes. During malignant diseases progression, changes in both DNA methylation patterns and DNA methyltransferase (MTase) genes are observed. Human de novo MTase DNMT3A is most frequently mutated in acute myeloid leukemia (AML) with a striking prevalence of R882H mutation, which has been extensively studied.
View Article and Find Full Text PDF