Proc Natl Acad Sci U S A
March 2022
Coherent nonlinear spectroscopies and imaging in the X-ray domain provide direct insight into the coupled motions of electrons and nuclei with resolution on the electronic length scale and timescale. The experimental realization of such techniques will strongly benefit from access to intense, coherent pairs of femtosecond X-ray pulses. We have observed phase-stable X-ray pulse pairs containing more than 3 × 107 photons at 5.
View Article and Find Full Text PDFWe present a combined theoretical and experimental study of X-ray optical wave mixing. This class of nonlinear phenomena combines the strengths of spectroscopic techniques from the optical domain, with the high-resolution capabilities of X-rays. In particular, the spectroscopic sensitivity of these phenomena can be exploited to selectively probe valence dynamics.
View Article and Find Full Text PDFKβ x-ray emission spectroscopy is a powerful probe for electronic structure analysis of 3d transition metal systems and their ultrafast dynamics. Selectively enhancing specific spectral regions would increase this sensitivity and provide fundamentally new insights. Recently we reported the observation and analysis of Kα amplified spontaneous x-ray emission from Mn solutions using an x-ray free-electron laser to create the 1s core-hole population inversion [Kroll et al.
View Article and Find Full Text PDFOscillators are at the heart of optical lasers, providing stable, transform-limited pulses. Until now, laser oscillators have been available only in the infrared to visible and near-ultraviolet (UV) spectral region. In this paper, we present a study of an oscillator operating in the 5- to 12-keV photon-energy range.
View Article and Find Full Text PDFDiffraction in multilayers in the presence of interfacial roughness is studied theoretically, the roughness being considered as a transition layer. Exact (within the framework of the two-beam dynamical diffraction theory) differential equations for field amplitudes in a crystalline structure with varying properties along its surface normal are obtained. An iterative scheme for approximate solution of the equations is developed.
View Article and Find Full Text PDFModeling of the X-ray diffractometer instrumental function for a given optics configuration is important both for planning experiments and for the analysis of measured data. A fast and universal method for instrumental function simulation, suitable for fully automated computer realization and describing both coplanar and noncoplanar measurement geometries for any combination of X-ray optical elements, is proposed. The method can be identified as semi-analytical backward ray tracing and is based on the calculation of a detected signal as an integral of X-ray intensities for all the rays reaching the detector.
View Article and Find Full Text PDFStrained germanium grown on silicon with nonstandard surface orientations like (011) or (111) is a promising material for various semiconductor applications, for example complementary metal-oxide semiconductor transistors. However, because of the large mismatch between the lattice constants of silicon and germanium, the growth of such systems is challenged by nucleation and propagation of threading and misfit dislocations that degrade the electrical properties. To analyze the dislocation microstructure of Ge films on Si(011) and Si(111), a set of reciprocal space maps and profiles measured in noncoplanar geometry was collected.
View Article and Find Full Text PDFThe technique of reciprocal space mapping using X-rays is a recognized tool for the nondestructive characterization of epitaxial films. X-ray scattering from epitaxial SiGe films on Si(100) substrates using a laboratory X-ray source was investigated. It is shown that a laboratory source with a rotating anode makes it possible to investigate the material parameters of the super-thin 2-6 nm layers.
View Article and Find Full Text PDF