TiZrTaAg alloy is a remarkable material with exceptional properties, making it a unique choice among various industrial applications. In the present study, two types of bioactive coatings using MAPLE were obtained on a TiZrTaAg substrate. The base coating consisted in a mixture of chitosan and bioglass in which zinc oxide and graphene oxide were added.
View Article and Find Full Text PDFIn this study, TiO thin films formed by dip-coating on an FTO substrate were obtained and characterized using surface, optical and electrochemical techniques. The impact of the dispersant (polyethylene glycol-PEG) on the surface (morphology, wettability, surface energy), optical (band gap and Urbach energy) and electrochemical (charge-transfer resistance, flat band potential) properties were investigated. When PEG was added to the sol-gel solution, the optical gap energy of the resultant films was reduced from 3.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2020
Taking into account that modified and non modified TiZr alloys have a chance as alternatives for Ti as implant materials, this paper is focused on the elaboration and characterization of TiZr hybrid nanostructures (nanopores and nanotubes) loaded with gentamicin (GS) and covered with chitosan. FT-IR analysis permitted structure and corresponding bands identification. Scanning electronic microscopy (SEM) was used for morphology analysis and nanostrucure dimensions evaluations.
View Article and Find Full Text PDFThe present work reports on the morphologies and properties of anodized Zr in two different electrolytes. The Zr phosphates (?-ZP) obtained in the inorganic electrolyte containing H3PO4+NaF and zirconia (ZrO2) nanostructures formed in the organic glycerol-based electrolytewere investigated by SEM, FT-IR and AFM. The surface analysis was completed by contact angles measurements.
View Article and Find Full Text PDFThis paper aims to investigate the composition, surface, and microstructural characteristics, and bioactivity of two commercially available pulp capping materials known as TheraCal LC and BIO MTA+. The materials were prepared as cylindrical samples and assessed by X-ray diffraction (XRD) and complex thermal analysis for mineralogical characterization, and by scanning electron microscopy (SEM) coupled with energy dispersive of X-ray (EDX), Fourier-Transformed Infrared Spectroscopy (FT-IR), and atomic force microscopy (AFM) for microstructural and surface characteristics. The in vitro bioactivity was highlighted by surface mineralization throughout SEM coupled with EDX and FT-IR analysis.
View Article and Find Full Text PDFUnlabelled: In the present work we report the fabrication of non-thickness-limited 1D nanostructures with nanochannelar structure by anodization of Ti50Zr alloy in hot glycerol-phosphate electrolyte. These nanochannelar structures show high and adjustable aspect ratios and provide as-formed already partial crystallinity for nanochannels. In vitro studies were performed to assess the inflammatory response to nanochannel coated surfaces using RAW 264.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
December 2014
Various TiO2 nanofibers on Ti surface have been fabricated via electrospinning and calcination. Due to different elaboration conditions the electrospun fibers have different surface feature morphologies, characterized by scanning electronic microscopy, surface roughness, and contact angle measurements. The results have indicated that the average sample diameters are between 32 and 44 nm, roughness between 61 and 416 nm, and all samples are hydrophilic.
View Article and Find Full Text PDF