Publications by authors named "Andrei B Belousov"

Neuronal gap junctional protein connexin 36 (Cx36) contributes to neuronal death following a range of acute brain insults such as ischemia, traumatic brain injury and epilepsy. Whether Cx36 contributes to neuronal death and pathological outcomes in chronic neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), is not known. We show here that the expression of Cx36 is significantly decreased in lumbar segments of the spinal cord of both human ALS subjects and SOD1 mice as compared to healthy human and wild-type mouse controls, respectively.

View Article and Find Full Text PDF

Gap junctions are unique membrane channels that play a significant role in intercellular communication in the developing and mature central nervous system (CNS). These channels are composed of connexin proteins that oligomerize into hexamers to form connexons or hemichannels. Many different connexins are expressed in the CNS, with some specificity with regard to the cell types in which distinct connexins are found, as well as the timepoints when they are expressed in the developing and mature CNS.

View Article and Find Full Text PDF

Pharmacological blockade or genetic knockout of neuronal connexin 36 (Cx36)-containing gap junctions reduces neuronal death caused by ischemia, traumatic brain injury and NMDA receptor (NMDAR)-mediated excitotoxicity. However, whether Cx36 gap junctions contribute to neuronal death via channel-dependent or channel-independent mechanism remains an open question. To address this, we manipulated connexin protein expression via lentiviral transduction of mouse neuronal cortical cultures and analyzed neuronal death twenty-four hours following administration of NMDA (a model of NMDAR excitotoxicity) or oxygen-glucose deprivation (a model of ischemic injury).

View Article and Find Full Text PDF

In the mammalian central nervous system (CNS), coupling of neurons by gap junctions (electrical synapses) increases during early postnatal development, then decreases, but increases in the mature CNS following neuronal injury, such as ischemia, traumatic brain injury and epilepsy. Glutamate-dependent neuronal death also occurs in the CNS during development and neuronal injury, i.e.

View Article and Find Full Text PDF

In the mammalian central nervous system (CNS), coupling of neurons by gap junctions (i.e., electrical synapses) and the expression of the neuronal gap junction protein, connexin 36 (Cx36), transiently increase during early postnatal development.

View Article and Find Full Text PDF

In the mammalian CNS, excessive release of glutamate and overactivation of glutamate receptors are responsible for the secondary (delayed) neuronal death following neuronal injury, including ischemia, traumatic brain injury (TBI) and epilepsy. The coupling of neurons by gap junctions (electrical synapses) increases during neuronal injury. In a recent study with the use of in vivo and in vitro models of cortical ischemia in mice, we have demonstrated that the ischemic increase in neuronal gap junction coupling is regulated by glutamate via group II metabotropic glutamate receptors (mGluR).

View Article and Find Full Text PDF

In the mammalian CNS, excessive release of glutamate and overactivation of glutamate receptors are responsible for the secondary (delayed) neuronal death following neuronal injury, including ischemia, traumatic brain injury (TBI) and epilepsy. Recent studies in mice showed a critical role for neuronal gap junctions in NMDA receptor-mediated excitotoxicity and ischemia-mediated neuronal death. Here, using controlled cortical impact (CCI) in adult mice, as a model of TBI, and Fluoro-Jade B staining for analysis of neuronal death, we set to determine whether neuronal gap junctions play a role in the CCI-mediated secondary neuronal death.

View Article and Find Full Text PDF

In the mammalian central nervous system (CNS), coupling of neurons by gap junctions (electrical synapses) increases during early post-natal development, then decreases, but increases in the mature CNS following neuronal injury, such as ischemia, traumatic brain injury and epilepsy. Glutamate-dependent neuronal death also occurs in the CNS during development and neuronal injury, i.e.

View Article and Find Full Text PDF

In the mammalian CNS, the expression of neuronal gap junction protein, connexin 36 (Cx36), increases during the first 2 weeks of postnatal development and then decreases during the following 2 weeks. Recently we showed that the developmental increase in Cx36 expression is augmented by chronic (2 weeks) activation of group II metabotropic glutamate receptors (mGluR), prevented by chronic receptor inactivation, and the receptor-dependent increase in Cx36 expression is regulated via transcriptional control of the Cx36 gene activity. We demonstrate here that acute (60 min) activation of group II mGluRs in developing cortical neuronal cultures causes transient increase in Cx36 protein expression with decrease during the following 24h.

View Article and Find Full Text PDF

In the mammalian CNS, excessive release of glutamate and overactivation of glutamate receptors are responsible for the secondary (delayed) neuronal death following neuronal injury, including ischemia, traumatic brain injury (TBI), and epilepsy. The coupling of neurons by gap junctions (electrical synapses) increases during neuronal injury. We report here that the ischemic increase in neuronal gap junction coupling is regulated by glutamate via group II metabotropic glutamate receptors (mGluRs).

View Article and Find Full Text PDF

Coupling of neurons by electrical synapses (gap junctions) transiently increases in the mammalian CNS during development and plays a role in a number of developmental events, including neuronal death. The coupling subsequently decreases and remains low in the adult, confined to specific subsets of neurons. In a recent study we have demonstrated that the developmental increase in neuronal gap junction coupling is regulated by the balance between the activity of two neurotransmitter receptors, group II metabotropic glutamate receptors (mGluR) and GABA(A) receptors.

View Article and Find Full Text PDF

In the mammalian CNS, deletion of neuronal gap junction protein, connexin 36 (Cx36), causes deficiencies in learning and memory. Here we tested whether Cx36 deletion affects the hippocampal long-term potentiation (LTP), which is considered as a cellular model of learning and memory mechanisms. We report that in acute slices of the hippocampal CA1 area, LTP is reduced in Cx36 knockout mice as compared to wild-type mice.

View Article and Find Full Text PDF

Coupling of neurons by electrical synapses (gap junctions) transiently increases in the mammalian CNS during development. We report here that the developmental increase in neuronal gap junction coupling and expression of connexin 36 (Cx36; neuronal gap junction protein) are regulated by an interplay between the activity of group II metabotropic glutamate receptors (mGluRs) and GABA(A) receptors. Specifically, using dye coupling, electrotonic coupling, Western blots and small interfering RNA in the rat and mouse hypothalamus and cortex in vivo and in vitro, we demonstrate that activation of group II mGluRs augments, and inactivation prevents, the developmental increase in neuronal gap junction coupling and Cx36 expression.

View Article and Find Full Text PDF

N-methyl-D-aspartate receptors (NMDARs) play an important role in cell survival versus cell death decisions during neuronal development, ischemia, trauma, and epilepsy. Coupling of neurons by electrical synapses (gap junctions) is high or increases in neuronal networks during all these conditions. In the developing CNS, neuronal gap junctions are critical for two different types of NMDAR-dependent cell death.

View Article and Find Full Text PDF

The effects of lifelong, moderate excess release of glutamate (Glu) in the CNS have not been previously characterized. We created a transgenic (Tg) mouse model of lifelong excess synaptic Glu release in the CNS by introducing the gene for glutamate dehydrogenase 1 (Glud1) under the control of the neuron-specific enolase promoter. Glud1 is, potentially, an important enzyme in the pathway of Glu synthesis in nerve terminals.

View Article and Find Full Text PDF

Previous studies indicated that a long-term decrease in the activity of ionotropic glutamate receptors induces cholinergic activity in rat and mouse hypothalamic neuronal cultures. Here we studied whether a prolonged inactivation of ionotropic glutamate receptors also induces cholinergic activity in hippocampal neurons. Receptor activity was chronically suppressed in rat hippocampal primary neuronal cultures with two proportionally increasing sets of concentrations of NMDA plus non-NMDA receptor antagonists: 100 microM/10 microM AP5/CNQX (1X cultures) and 200 microM/20 microM AP5/CNQX (2X cultures).

View Article and Find Full Text PDF

We recently used Western blots for connexin 36 and neuronal dye coupling with neurobiotin to measure developmental decrease in neuronal gap junction coupling in cell cultures. To ask whether Ca2+ imaging also can be used to measure changes in the amount of neuronal gap junction coupling, we defined a Ca2+ coupling coefficient as the percentage of neurons with bicuculline-induced increases in intracellular Ca2+ that are suppressed by blocking gap junctions. We demonstrate in rat and mouse hypothalamic neuronal cultures that the Ca2+ coupling coefficient decreases during culture development, this decrease is prevented by manipulations that also prevent developmental decrease in neuronal gap junction coupling, and the coefficient is low in cultures lacking connexin 36.

View Article and Find Full Text PDF

Specification of neurotransmitter phenotype is critical for neural circuit development and is influenced by intrinsic and extrinsic factors. Recent findings in rat hypothalamus in vitro suggest the role of neurotransmitter glutamate in the regulation of cholinergic phenotype. Here we extended our previous studies on the mechanisms of glutamate-dependent regulation of cholinergic phenotypic properties in hypothalamic neurons.

View Article and Find Full Text PDF

A number of studies have indicated an important role for N-methyl-D-aspartate (NMDA) receptors in cell survival versus cell death decisions during neuronal development, trauma, and ischemia. Coupling of neurons by electrical synapses (gap junctions) is high or increases in neuronal networks during all three of these conditions. However, whether neuronal gap junctions contribute to NMDA receptor-regulated cell death is not known.

View Article and Find Full Text PDF

Homeostatic plasticity is an important physiological process in the mammalian nervous system. In this review, we discuss methodological and mechanistic similarities and differences in cortical and hippocampal studies of homeostatic plasticity. Although there are many similarities, there are also region-specific differences in the effects and/or mechanisms that regulate homeostatic plasticity in these two regions.

View Article and Find Full Text PDF

Signaling through gap junctions (electrical synapses) is important in the development of the mammalian central nervous system. Abundant between neurons during postnatal development, gap junction coupling subsequently decreases and remains low in the adult, confined to specific subsets of neurons. Here we report that developmental uncoupling of gap junctions in the rat hypothalamus in vivo and in vitro is associated with a decrease in connexin 36 (Cx36) protein expression.

View Article and Find Full Text PDF

Previous experiments revealed a dramatic increase in excitatory acetylcholine transmission in hypothalamic cultures during a chronic decrease in glutamate activity. Data suggested that in the absence of glutamate excitation, acetylcholine becomes the major excitatory neurotransmitter. However, non-cholinergic excitatory activity was also detected in some neurons.

View Article and Find Full Text PDF

Glutamate NMDA receptor antagonists are used clinically. However, they have serious side effects, some of which are presumably due to an increase in acetylcholine transmission. Our previous experiments revealed acetylcholine-dependent excitation in rat hypothalamic cultures after a chronic glutamate receptor blockade.

View Article and Find Full Text PDF

Glutamate is a major fast excitatory neurotransmitter in the CNS including the hypothalamus. Our previous experiments in hypothalamic neuronal cultures showed that a long-term decrease in glutamate excitation upregulates ACh excitatory transmission. Data suggested that in the absence of glutamate activity in the hypothalamus in vitro, ACh becomes the major excitatory neurotransmitter and supports the excitation/inhibition balance.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9dddbh0o1i41mme0koa3i90l00me19df): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once