Genetic aberrations driving pro-oncogenic and pro-metastatic activity remain an elusive target in the quest of precision oncology. To identify such drivers, we use an animal model of KRAS-mutant lung adenocarcinoma to perform an in vivo functional screen of 217 genetic aberrations selected from lung cancer genomics datasets. We identify 28 genes whose expression promoted tumor metastasis to the lung in mice.
View Article and Find Full Text PDFMotivation: As cancer genomics initiatives move toward comprehensive identification of genetic alterations in cancer, attention is now turning to understanding how interactions among these genes lead to the acquisition of tumor hallmarks. Emerging pharmacological and clinical data suggest a highly promising role of cancer-specific protein-protein interactions (PPIs) as druggable cancer targets. However, large-scale experimental identification of cancer-related PPIs remains challenging, and currently available resources to explore oncogenic PPI networks are limited.
View Article and Find Full Text PDFAs genomics advances reveal the cancer gene landscape, a daunting task is to understand how these genes contribute to dysregulated oncogenic pathways. Integration of cancer genes into networks offers opportunities to reveal protein-protein interactions (PPIs) with functional and therapeutic significance. Here, we report the generation of a cancer-focused PPI network, termed OncoPPi, and identification of >260 cancer-associated PPIs not in other large-scale interactomes.
View Article and Find Full Text PDFProtein-protein interactions (PPIs) mediate the transmission and regulation of oncogenic signals that are essential to cellular proliferation and survival, and thus represent potential targets for anti-cancer therapeutic discovery. Despite their significance, there is no method to experimentally disrupt and interrogate the essentiality of individual endogenous PPIs. The ability to computationally predict or infer PPI essentiality would help prioritize PPIs for drug discovery and help advance understanding of cancer biology.
View Article and Find Full Text PDFThe c-Myc (MYC) transcription factor is a major cancer driver and a well-validated therapeutic target. However, directly targeting MYC has been challenging. Thus, identifying proteins that interact with and regulate MYC may provide alternative strategies to inhibit its oncogenic activity.
View Article and Find Full Text PDFLarge-scale genomics studies have generated vast resources for in-depth understanding of vital biological and pathological processes. A rising challenge is to leverage such enormous information to rapidly decipher the intricate protein-protein interactions (PPIs) for functional characterization and therapeutic interventions. While a number of powerful technologies have been employed to detect PPIs, a singular PPI biosensor platform with both high sensitivity and robustness in a mammalian cell environment remains to be established.
View Article and Find Full Text PDFThe emergence and convergence of cancer genomics, targeted therapies, and network oncology have significantly expanded the landscape of protein-protein interaction (PPI) networks in cancer for therapeutic discovery. Extensive biological and clinical investigations have led to the identification of protein interaction hubs and nodes that are critical for the acquisition and maintenance of characteristics of cancer essential for cell transformation. Such cancer-enabling PPIs have become promising therapeutic targets.
View Article and Find Full Text PDFApurinic/apyrimidinic (AP) endonucleases play a major role in the repair of AP sites, oxidative damage and alkylation damage in DNA. We employed Saccharomyces cerevisiae in an unbiased forward genetic screen to identify amino acid substitutions in the major yeast AP endonuclease, Apn1, that impair cellular DNA repair capacity by conferring sensitivity to the DNA alkylating agent methyl methanesulfonate. We report here the identification and characterization of the Apn1 V156E amino acid substitution mutant through biochemical and functional analysis.
View Article and Find Full Text PDFConformationally constrained analogues of the hormone melatonin with a side chain incorporated into the bicyclic bridgehead core were synthesized based on the homology modeling and molecular docking studies performed for the MT(2) melatonin receptor. The methoxy-indole derivative fused with exo-N-acetamino-substituted bicyclo[2.2.
View Article and Find Full Text PDFA(3) adenosine receptor (A(3)AR) ligands have been modified to optimize their interaction with the A(3)AR. Most of these modifications have been made to the N(6) and C2 positions of adenine as well as the ribose moiety, and using a combination of these substitutions leads to the most efficacious, selective, and potent ligands. A(3)AR agonists such as IB-MECA and Cl-IB-MECA are now advancing into Phase II clinical trials for treatments targeting diseases such as cancer, arthritis, and psoriasis.
View Article and Find Full Text PDFThe P2Y(14) receptor is a G protein-coupled receptor activated by uridine-5'-diphosphoglucose and other nucleotide sugars that modulates immune function. Covalent conjugation of P2Y(14) receptor agonists to PAMAM (polyamidoamine) dendrimers enhanced pharmacological activity. Uridine-5'-diphosphoglucuronic acid (UDPGA) and its ethylenediamine adduct were suitable functionalized congeners for coupling to several generations (G2.
View Article and Find Full Text PDFThe P2Y(14) receptor, a nucleotide signaling protein, is activated by uridine-5'-diphosphoglucose 1 and other uracil nucleotides. We have determined that the glucose moiety of 1 is the most structurally permissive region for designing analogues of this P2Y(14) agonist. For example, the carboxylate group of uridine-5'-diphosphoglucuronic acid proved to be suitable for flexible substitution by chain extension through an amide linkage.
View Article and Find Full Text PDF(N)-Methanocarba nucleosides containing bicyclo[3.1.0]hexane replacement of the ribose ring previously demonstrated selectivity as A(3) adenosine receptor (AR) agonists (5'-uronamides) or antagonists (5'-truncated).
View Article and Find Full Text PDFHomology modeling of the human A(2A) adenosine receptor (AR) based on bovine rhodopsin predicted a protein structure that was very similar to the recently determined crystallographic structure. The discrepancy between the experimentally observed orientation of the antagonist and those obtained by previous antagonist docking is related to the loop structure of rhodopsin being carried over to the model of the A(2A) AR and was rectified when the beta(2)-adrenergic receptor was used as a template for homology modeling. Docking of the triazolotriazine antagonist ligand ZM241385 1 was greatly improved by including water molecules of the X-ray structure or by using a constraint from mutagenesis.
View Article and Find Full Text PDFSeveral adamantane-based taxol mimetics were synthesized and found to be cytotoxic at micromolar concentrations and to cause tubulin aggregation. The extent of the aggregation is maximal for N-benzoyl-(2R,3S)-phenylisoseryloxyadamantane (5) and is very sensitive to the structural modifications. A hybrid compound (15), combining adamantane-based taxol mimetic with colchicine was synthesized and found to possess both microtubule depolymerizing and microtubule bundling activities in A549 human lung carcinoma cells.
View Article and Find Full Text PDFBioorg Med Chem Lett
August 2008
The theoretical possibility of bivalent binding of a dendrimer, covalently appended with multiple copies of a small ligand, to a homodimer of a G protein-coupled receptor was investigated with a molecular modeling approach. A molecular model was constructed of a third generation (G3) poly(amidoamine) (PAMAM) dendrimer condensed with multiple copies of the potent A(2A) adenosine receptor agonist CGS21680. The dendrimer was bound to an A(2A) adenosine receptor homodimer.
View Article and Find Full Text PDFAlthough elucidation of the medicinal chemistry of agonists and antagonists of the P2Y receptors has lagged behind that of many other members of group A G protein-coupled receptors, detailed qualitative and quantitative structure-activity relationships (SARs) were recently constructed for several of the subtypes. Agonists selective for P2Y(1), P2Y(2), and P2Y(6) receptors and nucleotide antagonists selective for P2Y(1) and P2Y(12) receptors are now known. Selective nonnucleotide antagonists were reported for P2Y(1), P2Y(2), P2Y(6), P2Y(11), P2Y(12), and P2Y(13) receptors.
View Article and Find Full Text PDFThe binding modes at the A 2B adenosine receptor (AR) of 72 derivatives of adenosine and its 5'- N-methyluronamide with diverse substitutions at the 2 and N (6) positions were studied using a molecular modeling approach. The compounds in their receptor-docked conformations were used to build CoMFA and CoMSIA quantitative structure-activity relationship models. Various parameters, including different types of atomic charges, were examined.
View Article and Find Full Text PDFHis272 (7.43) in the seventh transmembrane domain (TM7) of the human A3 adenosine receptor (AR) interacts with the 3' position of nucleosides, based on selective affinity enhancement at a H272E mutant A3 AR (neoceptor) of 3'-ureido, but not 3'-OH, adenosine analogues. Here, mutation of the analogous H278 of the human A1 AR to Ala, Asp, Glu, or Leu enhanced the affinity of novel 2'- and 3'-ureido adenosine analogues, such as 10 (N6-cyclopentyl-3'-ureido-3'-deoxyadenosine), by >100-fold, while decreasing the affinity or potency of adenosine and other 3'-OH adenosine analogues.
View Article and Find Full Text PDFUDP-glucose (UDPG) and derivatives are naturally occurring agonists of the Gi protein-coupled P2Y14 receptor, which occurs in the immune system. We synthesized and characterized pharmacologically novel analogues of UDPG modified on the nucleobase, ribose, and glucose moieties, as the basis for designing novel ligands in conjunction with modeling. The recombinant human P2Y14 receptor expressed in COS-7 cells was coupled to phospholipase C through an engineered Galpha-q/i protein.
View Article and Find Full Text PDF2, N6, and 5'-substituted adenosine derivatives were synthesized via alkylation of 2-oxypurine nucleosides leading to 2-arylalkylether derivatives. 2-(3-(Indolyl)ethyloxy)adenosine 17 was examined in both binding and cAMP assays and found to be a potent agonist of the human A2BAR. Simplification, altered connectivity, and mimicking of the indole ring of 17 failed to maintain A2BAR potency.
View Article and Find Full Text PDFA rhodopsin-based homology model of the nucleotide-activated human P2Y2 receptor, including loops, termini, and phospholipids, was optimized with the Monte Carlo multiple minimum conformational search routine. Docked uridine 5'-triphosphate (UTP) formed a nucleobase pi-pi complex with conserved Phe3.32.
View Article and Find Full Text PDFMolecular models of all known subtypes (A1, A2A, A2B, and A3) of the human adenosine receptors were built in homology with bovine rhodopsin. These models include the transmembrane domain as well as all extracellular and intracellular hydrophilic loops and terminal domains. The molecular docking of adenosine and 46 selected derivatives was performed for each receptor subtype.
View Article and Find Full Text PDF