We have developed an innovative thin-film nanocomposite membrane that contains cellulose acetate (CA) with small amounts of TiO-decorated graphene oxide (GO) (ranging from 0.5 wt.% to 2 wt.
View Article and Find Full Text PDFIn this study, composite membranes based on chitosan (CS), layered double hydroxide (LDH), and diclofenac were prepared via dispersing of LDH and diclofenac (DCF) in the chitosan matrix for gradual delivery of diclofenac sodium. The effect of using LDH in composites was compared to chitosan loaded with diclofenac membrane. LDH was added in order to develop a system with a long release of diclofenac sodium, which is used in inflammatory conditions as an anti-inflammatory drug.
View Article and Find Full Text PDFDue to its inherent properties and wide availability, cellulose acetate is an extremely competitive candidate for the production of polymeric membranes. However, for best results in particular applications, membrane modification is required in order to minimize unwanted interactions and introduce novel characteristics to the pristine polymer. In this study, the surface of commercial cellulose acetate membranes was functionalized with 4'-aminobenzo-15-crown-5 ether, using a covalent bonding approach.
View Article and Find Full Text PDFHeavy metal poisoning is a rare health condition caused by the accumulation of toxic metal ions in the soft tissues of the human body that can be life threatening if left untreated. In the case of severe intoxications, hemodialysis is the most effective method for a rapid clearance of the metal ions from the bloodstream, therefore, the development of hemodialysis membranes with superior metal ions retention ability is of great research interest. In the present study, synthetic polysulfone membranes were modified with reduced graphene oxide functionalized with crown ether, an organic compound with high metal ions complexation capacity.
View Article and Find Full Text PDFThis study presents a new, revolutionary, and easy method of separating Gd (III). For this purpose, a cellulose acetate membrane surface was modified in three steps, as follows: firstly, with aminopropyl triethoxysylene; then with glutaraldehyde; and at the end, by immobilization of crown ethers. The obtained membranes were characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS), through which the synthesis of membranes with Gd (III) separation properties is demonstrated.
View Article and Find Full Text PDFA successful bone-graft-controlled healing entails the development of novel products with tunable compositional and architectural features and mechanical performances and is, thereby, able to accommodate fast bone in-growth and remodeling. To this effect, graphene nanoplatelets and -fibers were chosen as mechanical reinforcement phase and sacrificial template, respectively, and incorporated into a hydroxyapatite and brushite matrix derived by marble conversion with the help of a reproducible technology. The bio-products, framed by a one-stage-addition polymer-free fabrication route, were thoroughly physico-chemically investigated (by XRD, FTIR spectroscopy, SEM, and nano-computed tomography analysis, as well as surface energy measurements and mechanical performance assessments) after sintering in air or nitrogen ambient.
View Article and Find Full Text PDFA novel hydrogel composite based on gellan gum and graphene oxide (GG/GO) was synthesized, characterized and tested for sorption capacity in this work. The microstructural, thermogravimetric and spectroscopic analysis confirmed the formation of the GG/GO composite. Comparative batch sorption experiments revealed a sorption capacity of the GG/GO composite for Zn (II) ions of approximately 2.
View Article and Find Full Text PDFThis article presents a facile synthesis method used to obtain new composite films based on polylactic acid and micro-structured hydroxyapatite particles. The composite films were synthesized starting from a polymeric solution in chloroform (12 wt.%) in which various concentrations of hydroxyapatite (1, 2, and 4 wt.
View Article and Find Full Text PDFA high number of studies support the use of mesoporous silica nanoparticles (MSN) as carriers for drug delivery systems due to its high biocompatibility both in vitro and in vivo, its large surface area, controlled pore size and, more than this, its good excretion capacity from the body. In this work we attempt to establish the optimal encapsulation parameters of benzalkonium chloride (BZC) into MSN and further study its drug release. The influence of different parameters towards the drug loading in MSN such as pH, contact time and temperature were considered.
View Article and Find Full Text PDFDespite their good biocompatibility and adequate mechanical behavior, the main limitation of Mg alloys might be their high degradation rates in a physiological environment. In this study, a novel Mg-based alloy exhibiting an elastic modulus E = 42 GPa, Mg-1Ca-0.2Mn-0.
View Article and Find Full Text PDFExtensively studied nowadays, graphene oxide (GO) has a benefic effect on cell proliferation and differentiation, thus holding promise for bone tissue engineering (BTE) approaches. The aim of this study was not only to design a chitosan 3D scaffold improved with GO for optimal BTE, but also to analyze its physicochemical properties and to evaluate its cytocompatibility and ability to support cell metabolic activity and proliferation. Overall results show that the addition of GO in the scaffold's composition improved mechanical properties and pore formation and enhanced the bioactivity of the scaffold material for tissue engineering.
View Article and Find Full Text PDFNanocomposites based on chitosan-polyvinyl alcohol (CS-PVA) and graphene oxide (GO) were prepared by casting the stable aqueous mixture of the components. SEM, TEM and X-ray diffraction showed that graphene oxide is largely dispersed on molecular scale within CS-PVA matrix. FTIR investigation indicated the occurrence of some interaction between graphene oxide nanosheets and CS-PVA.
View Article and Find Full Text PDF