Publications by authors named "Andree-Anne Hudon Thibeault"

Asthma is a complex trait, often associated with atopy. The genetic contribution has been evidenced by familial occurrence. Genome-wide association studies allowed for associating numerous genes with asthma, as well as identifying new loci that have a minor contribution to its phenotype.

View Article and Find Full Text PDF

Serotonin reuptake inhibitors (SRIs) are currently the main molecules prescribed to pregnant women that suffer from depression. Placental cells are exposed to SRIs via maternal blood, and we have previously shown that SRIs alter feto-placental steroidogenesis in an in vitro co-culture model. More specifically, serotonin (5-HT) regulates the estrogen biosynthetic enzyme aromatase (cytochrome P450 19; CYP19), which is disrupted by fluoxetine and its active metabolite norfluoxetine in BeWo choriocarcinoma cells.

View Article and Find Full Text PDF

We have reviewed the scientific literature related to four diseases in which to serotonin (5-HT) is involved in the etiology, herein named 5-HT-linked diseases, and whose prevalence is influenced by estrogenic status: depression, migraine, irritable bowel syndrome and eating disorders. These diseases all have in common a sex-dimorphic prevalence, with women more frequently affected than men. The co-occurrence between these 5-HT-linked diseases suggests that they have common physiopathological mechanisms.

View Article and Find Full Text PDF

Estrogen production by the human villous trophoblast is dependent on the biosynthetic enzyme aromatase (CYP19; CYP19A1) and is crucial for successful placental development and pregnancy outcome. Using villous cytotrophoblast cells (vCTs) freshly isolated from normal term placenta, we characterized the promoter-specific expression of CYP19A1 mRNA (derived from promoters I.1, I.

View Article and Find Full Text PDF

Estrogens are produced in large amounts during pregnancy, as a result of a tightly regulated cooperation between the maternal and fetal adrenal cortex, which produce androgen precursors, and the placental villous trophoblast, which transforms these precursors into estrogens. These estrogens play an important role in proper placental function, in adaptation of the mother to pregnancy, as well as in adequate fetal development. Disruption of estrogen production is associated with poor pregnancy outcomes and fetal malformation or altered fetal programming.

View Article and Find Full Text PDF

In vitro functional analyses of cells are widely used to investigate the molecular mechanisms involved in preeclampsia. Common cellular functions studied include adhesion, apoptosis, proliferation, migration, and invasion. At present, most researchers will use endpoint experimental assays that only allow the determination of cell function at a single time point, with the need to repeat the experiment for an alternate time point.

View Article and Find Full Text PDF

Estrogen biosynthesis during pregnancy is dependent on the collaboration between the fetus producing the androgen precursors, and the placenta expressing the enzyme aromatase (CYP19). Disruption of estrogen production by contaminants may result in serious pregnancy outcomes. We used our recently developed in vitro co-culture model of fetoplacental steroidogenesis to screen the effects of three neonicotinoid insecticides on the catalytic activity of aromatase and the production of steroid hormones.

View Article and Find Full Text PDF

Excessive placental inflammation is associated with several pathological conditions, including stillbirth and fetal growth restriction. Although infection is a known cause of inflammation, a significant proportion of pregnancies have evidence of inflammation without any detectable infection. Inflammation can also be triggered by endogenous mediators, called damage associated molecular patterns or alarmins.

View Article and Find Full Text PDF

The effects of fluoxetine, one of the most prescribed selective serotonin-reuptake inhibitors (SSRIs) during pregnancy, and its active metabolite norfluoxetine were studied on placental aromatase (CYP19) and feto-placental steroidogenesis. Fluoxetine did not alter estrogen secretion in co-culture of fetal-like adrenocortical (H295R) and trophoblast-like (BeWo) cells used as a model of the feto-placental unit, although it induced CYP19 activity, apparently mediated by the serotonin (5-HT) receptor/PKC signaling pathway. Norfluoxetine decreased estrogen secretion in the feto-placental co-culture and competitively inhibited catalytic CYP19 activity in BeWo cells.

View Article and Find Full Text PDF

This protocol describes how villous cytotrophoblast cells are isolated from placentas at term by successive enzymatic digestions, followed by density centrifugation, media gradient isolation and immunomagnetic purification. As observed in vivo, mononucleated villous cytotrophoblast cells in primary culture differentiate into multinucleated syncytiotrophoblast cells after 72 hr. Compared to normoxia (8% O2), villous cytotrophoblast cells that undergo hypoxia/reoxygenation (0.

View Article and Find Full Text PDF

Background: Experimental tools for studying the complex steroidogenic interactions that occur between placenta and fetus during human pregnancy are extremely limited.

Objectives: We aimed to develop a co-culture model to study steroidogenesis by the human fetoplacental unit and its disruption by exposure to environmental contaminants.

Methods: We cultured BeWo human choriocarcinoma cells, representing the villous cytotrophoblast, and H295R human adrenocortical carcinoma cells, representing the fetal unit, in a carefully adapted co-culture medium.

View Article and Find Full Text PDF