Publications by authors named "Andree Houbion"

We show that mitochondrial DNA (mtDNA)-depleted 143B cells are hypersensitive to staurosporine-induced cell death as evidenced by a more pronounced DNA fragmentation, a stronger activation of caspase-3, an enhanced poly(ADP-ribose) polymerase-1 (PARP-1) cleavage, and a more dramatic cytosolic release of cytochrome c. We also show that B-cell CLL/lymphoma-2 (Bcl-2), B-cell lymphoma extra large (Bcl-X(L)), and myeloid cell leukemia-1 (Mcl-1) are constitutively less abundant in mtDNA-depleted cells, that the inhibition of Bcl-2 and Bcl-X(L) can sensitize the parental cell line to staurosporine-induced apoptosis, and that overexpression of Bcl-2 or Bcl-X(L) can prevent the activation of caspase-3 in ρ(0)143B cells treated with staurosporine. Moreover, the inactivation of cathepsin B with CA074-Me significantly reduced cytochrome c release, caspase-3 activation, PARP-1 cleavage, and DNA fragmentation in mtDNA-depleted cells, whereas the pan-caspase inhibitor failed to completely prevent PARP-1 cleavage and DNA fragmentation in these cells, suggesting that caspase-independent mechanisms are responsible for cell death even if caspases are activated.

View Article and Find Full Text PDF

Impairment of mitochondrial activity affects lipid-metabolizing tissues and mild mitochondrial uncoupling has been proposed as a possible strategy to fight obesity and associated diseases. In this report, we characterized the 3T3-L1-adipocyte ;de-differentiation' induced by carbonyl cyanide (p-trifluoromethoxy)-phenylhydrazone (FCCP), a mitochondrial uncoupler. We found a decrease in triglyceride (TG) content in adipocytes incubated with this molecule.

View Article and Find Full Text PDF

RNA-mediated gene silencing (RNA interference) is a powerful way to knock down gene expression and has revolutionized the fields of cellular and molecular biology. Indeed, the transfection of cultured cells with small interfering RNAs (siRNAs) is currently considered to be the best and easiest approach to loss-of-function experiments. However, several recent studies underscore the off-target and potential cytotoxic effects of siRNAs, which can lead to the silencing of unintended mRNAs.

View Article and Find Full Text PDF

Several mitochondrial pathologies are characterized by lipid redistribution and microvesicular cell phenotypes resulting from triglyceride accumulation in lipid-metabolizing tissues. However, the molecular mechanisms underlying abnormal fat distribution induced by mitochondrial dysfunction remain poorly understood. In this study, we show that inhibition of respiratory complex III by antimycin A as well as inhibition of mitochondrial protein synthesis trigger the accumulation of triglyceride vesicles in 3T3-L1 fibroblasts.

View Article and Find Full Text PDF

Alterations in mitochondrial activity resulting from defects in mitochondrial DNA (mtDNA) can modulate the biogenesis of mitochondria by mechanisms that are still poorly understood. In order to study mitochondrial biogenesis in cells with impaired mitochondrial activity, we used rho-L929 and rho(0)143 B cells (partially and totally depleted of mtDNA, respectively), that maintain and even up-regulate mitochondrial population, to characterize the activity of major transcriptional regulators (Sp1, YY1, MEF2, PPARgamma, NRF-1, NRF-2, CREB and PGC-1alpha) known to control the expression of numerous nuclear genes encoding mitochondrial proteins. Among these regulators, cyclic AMP-responsive element binding protein (CREB) activity was the only one to be increased in mtDNA-depleted cells.

View Article and Find Full Text PDF

Mitochondrial cytopathy has been associated with modifications of lipid metabolism in various situations, such as the acquisition of an abnormal adipocyte phenotype observed in multiple symmetrical lipomatosis or triglyceride (TG) accumulation in muscles associated with the myoclonic epilepsy with ragged red fibers syndrome. However, the molecular signaling leading to fat metabolism dysregulation in cells with impaired mitochondrial activity is still poorly understood. Here, we found that preadipocytes incubated with inhibitors of mitochondrial respiration such as antimycin A (AA) accumulate TG vesicles but do not acquire specific markers of adipocytes.

View Article and Find Full Text PDF