Objective: Intraventricular hemorrhage (IVH) is a common cause of preterm brain injury. Fresh parent's own milk (POM) contains pluripotent stem cells (SCs) that produce neuronal cells in-vitro. The permeable neonatal blood brain barrier potentially allows SC delivery.
View Article and Find Full Text PDFCell-based therapeutics are promising interventions to repair ischemic cardiac tissue. However, no single cell type has yet been found to be both specialized and versatile enough to heal the heart. The synergistic effects of two regenerative cell types including endothelial colony forming cells (ECFC) and first-trimester human umbilical cord perivascular cells (FTM HUCPVC) with endothelial cell and pericyte properties respectively, on angiogenic and regenerative properties were tested in a rat model of myocardial infarction (MI), in vitro tube formation and Matrigel plug assay.
View Article and Find Full Text PDFBackground: The Kynurenine Pathway (KP) of tryptophan degradation and glutamate toxicity is implicated in several neurological disorders, including depression. The therapeutic potential of mesenchymal stromal cells (MSC), owing to their well documented phagocytosis-driven mechanism of immunomodulation and neuroprotection, has been tested in many neurological disorders. However, their potential to influence KP and the glutamatergic system has not yet been investigated.
View Article and Find Full Text PDFNon-obstructive azoospermia (NOA), the most severe form of male infertility, could be treated with intracytoplasmic sperm injection, providing spermatozoa were retrieved with the microdissection testicular sperm extraction (mTESE). We hypothesized that testis-specific and germ cell-specific proteins would facilitate flow cytometry-assisted identification of rare spermatozoa in semen cell pellets of NOA patients, thus enabling non-invasive diagnostics prior to mTESE. Data mining, targeted proteomics, and immunofluorescent microscopy identified and verified a panel of highly testis-specific proteins expressed at the continuum of germ cell differentiation.
View Article and Find Full Text PDFBackground Aims: Because of their potent immunomodulatory and anti-inflammatory properties, mesenchymal stromal cells are a major focus in the field of stem cell therapy. However, the precise mechanisms underlying this are not entirely understood. Human umbilical cord perivascular cells (HUCPVCs) are a promising cell therapy candidate.
View Article and Find Full Text PDFObjective: To study whether intratesticular (IT) administration of 2 sources of human umbilical cord perivascular cells (HUCPVC), rich and potent sources of mesenchymal stromal cells (MSC), before chemotherapy can prevent infertility in a mouse model.
Design: Two control groups of CD1 male mice without busulfan (BUS) administration (untreated and IT media injection groups) were included. Experimental groups included IT administration of media, first trimester (FTM) HUCPVCs or term HUCPVCs (n = 5 each) injected 3 days before BUS treatment (20 mg/kg).
Chemotherapies can cause germ cell depletion and gonadal failure. When injected post-chemotherapy, mesenchymal stromal cells (MSCs) from various sources have been shown to have regenerative effects in rodent models of chemotherapy-induced gonadal injury. Here, we evaluated two properties of a novel source of MSC, first trimester (FTM) human umbilical cord perivascular cells (HUCPVCs) (with increased regenerative potential compared to older sources), that may render them a promising candidate for chemotherapeutic gonadal injury prevention.
View Article and Find Full Text PDFTraumatic brain injury (TBI) leads to delayed secondary injury events consisting of cellular and molecular cascades that exacerbate the initial injury. Human umbilical cord perivascular cells (HUCPVCs) secrete neurotrophic and prosurvival factors. In this study, we examined the effects of HUCPVC in sympathetic axon and cortical axon survival models and sought to determine whether HUCPVC provide axonal survival cues.
View Article and Find Full Text PDFBackground: Hyperactivation of innate immunity has been implicated in the etiology of mood disorders, including major depressive disorder (MDD). Mesenchymal stromal cells (MSCs) have demonstrated potent immunomodulatory capabilities in the context of chronic inflammatory disease and injury but have yet to be evaluated in stress-based preclinical models of MDD. We sought to test the ability of intravenous MSCs to modulate innate immune activation and behavioral patterns associated with repeated social defeat (RSD).
View Article and Find Full Text PDFThe structural components of the umbilical cord, including two arteries and one vein, the stromal region/Wharton's jelly, and amniotic epithelial membrane, are well described at various time points of gestation. Over the last two decades, evidence has emerged that multipotent cells sharing properties of mesenchymal stromal cell and pericytes/mural cells can be isolated from multiple regions of the umbilical cord, including the perivascular region of the umbilical cord arteries and vein, Wharton's jelly, and subamnion. These cells have increasingly gained interest for their potential use in regenerative and immunomodulatory medicine.
View Article and Find Full Text PDFUnlabelled: Spermatogonial Stem Cell (SSC) expansion in vitro remains a major challenge in efforts to preserve fertility among pubertal cancer survivor boys. The current study focused on innovative approaches to optimize SSC expansion. Six- to eight-week-old CD-1 murine testicular samples were harvested by mechanical and enzymatic digestion.
View Article and Find Full Text PDFBackground: Due to limitations of current angiogenesis assays, we aimed to develop a novel application of the rat aortic ring assay to assess the angiogenic potential of mesenchymal stromal cells (MSCs). First-trimester human umbilical cord-derived perivascular cells (FTM HUCPVCs) have multipotent characteristics and previously demonstrated angiogenic potential. We compared the effect of this young source of MSCs and adult bone marrow stromal cells (BMSCs) on ex vivo aortic endothelial network formation.
View Article and Find Full Text PDFObjective: To optimize culture conditions for human testicular somatic cells (TSCs) and spermatogonial stem cells.
Design: Basic science study.
Setting: Urology clinic and stem cell research laboratory.
Background: First trimester (FTM) and term human umbilical cord-derived perivascular cells (HUCPVCs), which are rich sources of mesenchymal stem cells (MSCs), can give rise to Sertoli cell (SC)-like as well as haploid germ cell (GC)-like cells in vitro using culture conditions that recapitulate the testicular niche. Gamete-like cells have been produced ex vivo using pluripotent stem cells as well as MSCs. However, the production of functional gametes from human stem cells has yet to be achieved.
View Article and Find Full Text PDFThe expansion of functional testicular biopsy-derived human spermatogonial stem cells (hSSC) ex-vivo may enable the restoration of fertility in pre-pubertal males having undergone gonadotoxic therapies or men with severe male factor infertility. Various somatic cells are known to regulate SSC homeostasis and spermatogenesis in the developing and adult testis. Prior attempts to recapitulate this niche demonstrated the requirement of feeder cells, such as endogenous testicular somatic cells, for germ cell expansion ex-vivo.
View Article and Find Full Text PDFMyocardial infarction (MI) causes an extensive loss of heart muscle cells and leads to congestive heart disease (CAD), the leading cause of mortality and morbidity worldwide. Mesenchymal stromal cell- (MSC-) based cell therapy is a promising option to replace invasive interventions. However the optimal cell type providing significant cardiac regeneration after MI is yet to be found.
View Article and Find Full Text PDFHuman umbilical cord-derived perivascular cells (PVCs) are a recently characterized source of mesenchymal stromal cells that has gained much interest in the field of cellular therapeutics. However, very little is known about the changes in fate potential and restrictions that these cells undergo during gestational development. This study is the first to examine the phenotypic, molecular, and functional properties of first trimester (FTM)-derived PVCs, outlining properties that are unique to this population when compared to term (TERM) counterparts.
View Article and Find Full Text PDFIncreasing evidence indicates that epigenetic changes regulate cell genesis. Here, we ask about neural precursors, focusing on CREB binding protein (CBP), a histone acetyltransferase that, when haploinsufficient, causes Rubinstein-Taybi syndrome (RTS), a genetic disorder with cognitive dysfunction. We show that neonatal cbp(+/-) mice are behaviorally impaired, displaying perturbed vocalization behavior.
View Article and Find Full Text PDFAdult neural stem cells (NSCs) are involved in regulating mammalian behavior and are controlled by diverse external stimuli. Improved understanding of the physical location of NSCs and the microenvironmental cues that regulate their behavior, which combine to define the NSC "home," or niche, may reveal how to control their function.
View Article and Find Full Text PDFThe mechanisms that regulate symmetric, proliferative divisions versus asymmetric, neurogenic divisions of mammalian neural precursors are still not well understood. We found that Lfc (Arhgef2), a Rho-specific guanine nucleotide exchange factor that interacts with spindle microtubules, and its negative regulator Tctex-1 (Dynlt1) determine the genesis of neurons from precursors in the embryonic murine cortex. Specifically, genetic knockdown of Arhgef2 in cortical precursors either in culture or in vivo inhibited neurogenesis and maintained cells as cycling radial precursors.
View Article and Find Full Text PDF