Recent cosmological measurements indicate that baryons comprise about four per cent of the total mass-energy density of the Universe, which is in accord with the predictions arising from studies of the production of the lightest elements. It is also in agreement with the actual number of baryons detected at early times (redshifts z > 2). Close to our own epoch (z < 2), however, the number of baryons detected add up to just over half (approximately 55 per cent) of the number seen at z > 2 (refs 6-11), meaning that about approximately 45 per cent are 'missing'.
View Article and Find Full Text PDFThe number of baryons detected in the low-redshift (z < 1) Universe is far smaller than the number detected in corresponding volumes at higher redshifts. Simulations of the formation of structure in the Universe show that up to two-thirds of the 'missing' baryons may have escaped detection because of their high temperature and low density. One of the few ways to detect this matter directly is to look for its signature in the form of ultraviolet absorption lines in the spectra of background sources such as quasars.
View Article and Find Full Text PDFThe physical nature of ultraluminous x-ray sources is uncertain. Stellar-mass black holes with beamed radiation and intermediate black holes with isotropic radiation are two plausible explanations. We discovered radio emission from an ultraluminous x-ray source in the dwarf irregular galaxy NGC 5408.
View Article and Find Full Text PDF