Publications by authors named "Andreas Zanzoni"

Article Synopsis
  • The translocated intimin receptor (Tir) is a key protein used by certain pathogens to interact with host cells, contributing to foodborne diseases.
  • Researchers found that Tir is a disordered protein capable of binding to various host proteins, which helps it manipulate cellular processes.
  • The study reveals how Tir's structure and modifications enable it to form complexes with host proteins, showcasing its role in evading the immune response and influencing host cell behavior.
View Article and Find Full Text PDF

Understanding the mechanisms of coronavirus disease 2019 (COVID-19) disease severity to efficiently design therapies for emerging virus variants remains an urgent challenge of the ongoing pandemic. Infection and immune reactions are mediated by direct contacts between viral molecules and the host proteome, and the vast majority of these virus-host contacts (the 'contactome') have not been identified. Here, we present a systematic contactome map of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with the human host encompassing more than 200 binary virus-host and intraviral protein-protein interactions.

View Article and Find Full Text PDF

Viral infections are one of the major causes of human diseases that cause yearly millions of deaths and seriously threaten global health, as we have experienced with the COVID-19 pandemic. Numerous approaches have been adopted to understand viral diseases and develop pharmacological treatments. Among them, the study of virus-host protein-protein interactions is a powerful strategy to comprehend the molecular mechanisms employed by the virus to infect the host cells and to interact with their components.

View Article and Find Full Text PDF

Multifunctional proteins often perform their different functions when localized in different subcellular compartments. However, the mechanisms leading to their localization are largely unknown. Recently, 3'UTRs were found to regulate the cellular localization of newly synthesized proteins through the formation of 3'UTR-protein complexes.

View Article and Find Full Text PDF

Moonlighting proteins perform multiple unrelated functions without any change in polypeptide sequence. They can coordinate cellular activities, serving as switches between pathways and helping to respond to changes in the cellular environment. Therefore, regulation of the multiple protein activities, in space and time, is likely to be important for the homeostasis of biological systems.

View Article and Find Full Text PDF

Chikungunya virus (CHIKV) and Zika virus (ZIKV) are emerging arboviruses that pose a worldwide threat to human health. Currently, neither vaccine nor antiviral treatment to control their infections is available. As the skin is a major viral entry site for arboviruses in the human host, we determined the global proteomic profile of CHIKV and ZIKV infections in human skin fibroblasts using Stable Isotope Labelling by Amino acids in Cell culture (SILAC)-based mass-spectrometry analysis.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are exploring how proteins that have related functions can be synthesized together after transcription, using regulatory molecules like RNA-binding proteins (RBPs).
  • They've developed a computational method to analyze interactions between proteins and mRNAs, uncovering the post-transcriptional regulation of over 800 human RBPs.
  • Their findings suggest that 10% of groups of related mRNAs can be regulated this way and propose classifications for RBPs and mRNAs, which could help understand their roles in human diseases.
View Article and Find Full Text PDF

The human transcriptome contains thousands of long non-coding RNAs (lncRNAs). Characterizing their function is a current challenge. An emerging concept is that lncRNAs serve as protein scaffolds, forming ribonucleoproteins and bringing proteins in proximity.

View Article and Find Full Text PDF

Background: Fusobacterium nucleatum is a gram-negative anaerobic species residing in the oral cavity and implicated in several inflammatory processes in the human body. Although F. nucleatum abundance is increased in inflammatory bowel disease subjects and is prevalent in colorectal cancer patients, the causal role of the bacterium in gastrointestinal disorders and the mechanistic details of host cell functions subversion are not fully understood.

View Article and Find Full Text PDF

Quantitative proteomics allows the characterization of molecular changes between healthy and disease states. To interpret such datasets, their integration to the protein-protein interaction network provides a more comprehensive understanding of cellular function dysregulation in diseases than just considering lists of dysregulated proteins. Here, we propose a novel computational method, which combines protein interaction network and statistical analyses to establish expression profiles at the network module level rather than at the individual protein level, and to detect and characterize dysregulated network modules through different stages of cancer progression.

View Article and Find Full Text PDF

Recent advances in the fields of genetics and genomics have enabled the identification of numerous Alzheimer's disease (AD) candidate genes, although for many of them the role in AD pathophysiology has not been uncovered yet. Concomitantly, network biology studies have shown a strong link between protein network connectivity and disease. In this chapter I describe a computational approach that, by combining local and global network analysis strategies, allows the formulation of novel hypotheses on the molecular mechanisms involved in AD and prioritizes candidate genes for further functional studies.

View Article and Find Full Text PDF

Moonlighting proteins are a subset of multifunctional proteins characterized by their multiple, independent, and unrelated biological functions. We recently set up a large-scale identification of moonlighting proteins using a protein-protein interaction (PPI) network approach. We established that 3% of the current human interactome is composed of predicted moonlighting proteins.

View Article and Find Full Text PDF

This Preface introduces the content of the BioMed Central journal Supplements related to BITS2014 meeting, held in Rome, Italy, from the 26th to the 28th of February, 2014.

View Article and Find Full Text PDF

A cross-talk in host-parasite associations begins when a host encounters a parasite. For many host-parasite relationships, this cross-talk has been taking place for hundreds of millions of years. The co-evolution of hosts and parasites, the familiar 'arms race' results in fascinating adaptations.

View Article and Find Full Text PDF

Despite the remarkable progress achieved in the identification of specific genes involved in breast cancer (BC), our understanding of their complex functioning is still limited. In this manuscript, we systematically explore the existence of direct physical interactions between the products of BC core and associated genes. Our aim is to generate a protein interaction network of BC-associated gene products and suggest potential molecular mechanisms to unveil their role in the disease.

View Article and Find Full Text PDF

Molecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites.

View Article and Find Full Text PDF

Intracellular pathogens including bacteria, viruses and protozoa hijack host cell functions to access nutrients and to bypass cellular defenses and immune responses. These strategies have been acquired through selective pressure and allowed pathogens to reach an appropriate cellular niche for their survival and growth. To get new insights on how parasites hijack host cellular functions, we developed a SILAC (Stable Isotope Labeling by Amino Acids in Cell culture) quantitative proteomics workflow.

View Article and Find Full Text PDF

Motivation: The recent shift towards high-throughput screening is posing new challenges for the interpretation of experimental results. Here we propose the cleverSuite approach for large-scale characterization of protein groups.

Description: The central part of the cleverSuite is the cleverMachine (CM), an algorithm that performs statistics on protein sequences by comparing their physico-chemical propensities.

View Article and Find Full Text PDF

Previous evidence indicates that a number of proteins are able to interact with cognate mRNAs. These autogenous associations represent important regulatory mechanisms that control gene expression at the translational level. Using the catRAPID approach to predict the propensity of proteins to bind to RNA, we investigated the occurrence of autogenous associations in the human proteome.

View Article and Find Full Text PDF

Summary: Here we introduce catRAPID omics, a server for large-scale calculations of protein-RNA interactions. Our web server allows (i) predictions at proteomic and transcriptomic level; (ii) use of protein and RNA sequences without size restriction; (iii) analysis of nucleic acid binding regions in proteins; and (iv) detection of RNA motifs involved in protein recognition.

Results: We developed a web server to allow fast calculation of ribonucleoprotein associations in Caenorhabditis elegans, Danio rerio, Drosophila melanogaster, Homo sapiens, Mus musculus, Rattus norvegicus, Saccharomyces cerevisiae and Xenopus tropicalis (custom libraries can be also generated).

View Article and Find Full Text PDF

Here we postulate that the adapter protein evolutionarily conserved signalling intermediate in Toll pathway (ECSIT) might act as a molecular sensor in the pathogenesis of Alzheimer's disease (AD). Based on the analysis of our AD-associated protein interaction network, ECSIT emerges as an integrating signalling hub that ascertains cell homeostasis by the specific activation of protective molecular mechanisms in response to signals of amyloid-beta or oxidative damage. This converges into a complex cascade of patho-physiological processes.

View Article and Find Full Text PDF

Recent advances toward the characterization of Alzheimer's disease (AD) have permitted the identification of a dozen of genetic risk factors, although many more remain undiscovered. In parallel, works in the field of network biology have shown a strong link between protein connectivity and disease. In this manuscript, we demonstrate that AD-related genes are indeed highly interconnected and, based on this observation, we set up an interaction discovery strategy to unveil novel AD causative and susceptibility genes.

View Article and Find Full Text PDF

Phospho3D is a database of three-dimensional (3D) structures of phosphorylation sites (P-sites) derived from the Phospho.ELM database, which also collects information on the residues surrounding the P-site in space (3D zones). The database also provides the results of a large-scale structural comparison of the 3D zones versus a representative dataset of structures, thus associating to each P-site a number of structurally similar sites.

View Article and Find Full Text PDF

High-throughput interaction discovery initiatives are providing thousands of novel protein interactions which are unveiling many unexpected links between apparently unrelated biological processes. In particular, analyses of the first draft human interactomes highlight a strong association between protein network connectivity and disease. Indeed, recent exciting studies have exploited the information contained within protein networks to disclose some of the molecular mechanisms underlying complex pathological processes.

View Article and Find Full Text PDF