Publications by authors named "Andreas Wischnewski"

We present a structural and dynamic study on the simplest supramolecular hetero-association, recently investigated by the authors to prepare architectural homogeneous structures in the melt state, based on the bio-inspired hydrogen-bonding of thymine/diaminotriazine (thy-DAT) base-pairs. In the combination with an amorphous low T poly(butylene oxide) (PBO), no micellar structures are formed, which is expected for nonpolar polymers because of noncompatibility with the highly polar supramolecular groups. Instead, a clear polymer-like transient architecture is retrieved.

View Article and Find Full Text PDF

We present a systematic investigation of well-characterized, experimentally pure polystyrene (PS) rings with molar mass of 161 000 g/mol in dilute solutions. We measure the ring form factor at - and good-solvent conditions as well as in a polymeric solvent (linear PS of roughly comparable molar mass) by means of small-angle neutron scattering (SANS). Additional dynamic light scattering (DLS) measurements support the SANS data and help elucidate the role of solvent quality and solution preparation.

View Article and Find Full Text PDF

Using neutron spin echo spectroscopy, we show that the segmental dynamics of polymer rings immersed in linear chains is completely controlled by the host. This transforms rings into ideal probes for studying the entanglement dynamics of the embedding matrix. As a consequence of the unique ring topology, in long chain matrices the entanglement spacing is directly revealed, unaffected by local reptation of the host molecules beyond this distance.

View Article and Find Full Text PDF

We present a neutron scattering analysis of the structure and dynamics of PEO polymer rings with a molecular weight 2.5 times higher than the entanglement mass. The melt structure was found to be more compact than a Gaussian model would suggest.

View Article and Find Full Text PDF

We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts to their ring counterparts at isofrictional conditions is discussed as function of the number of entanglements . In the unentangled regime is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation .

View Article and Find Full Text PDF